" HD-R138 466 PLAFST PRUGRHHHHBLE LOGIT RRRRV FRUH STFITE TFIBLE(U) AIR
FOR INST TECH WRIGHT-PATTERSON AFB OH SCHOOL OF

ENGINEERING D C PELAN DEC 83 RFIT/GE/EE/83D-57
UNCLASSIFIED F/G 9/2

z

P IR A IR YR R T AR TAYEIR T R RO IR S R g el I . D A e S

e W wT e, 4‘4

_—

N
R
f
1, L

EEFEEE

EFEE
EEE

——

—
-—
.
-—
g’:
(13

lé
it s

i
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AL A A i Sar O Tt DA T A s VRV KAy R e L T S T S Y T T AN NN oy s T

ADA138466

PLAFST

Programmable Logic Array From State Table

- :?‘-.'l l:l. .f.'.:'.?“‘ .

g THESIS

AFIT/GE/EE/83D-57 Darrell C. Pelan
1st Lt USAF

‘. , t { (' ‘.
‘o v \“‘. :' "v “l

- ELECT
o FED 29

gne FILE COPY

; DEPARTMENT OF THE AIR FORCE D
K. AIR UNIVERSITY
¥

AIR FORCE INSTITUTE OF TECHNOLOGY

W Wright-Patterson Air Force Base, Ohio

IS) e |
R o n ~ e
. rypioved for public rolocner 4 (\ o 7 (- (\
T e ene D‘-.‘;‘}---.a:»...‘vv;"_ - ’-A.\-" '
p P A A IR ASAT SR TIPS e aean ce el

AT CT e « e

~
[DA .’ ., AR . DTN R et - :
PPN U L R P SIS NP O I U A I SR I A I R P TR N -';.\'.\.i

t‘;-r '

['

RO VU NMNNE A e | AARANT Y i

AFIT/GE/EE/83D-57

Accession For

CNTIS GRA&I

DTIC TAB
Unannounced O
Justification 4

By.
Distribution/ |

Availabil{ty Codes
[Avail and/or
Dist Special

All

PLAFST
Programmable Logic Array From State Table
THESIS

AFIT/GE/EE/83D-57 Darrell C. Pelan
1st Lt USAF

Approved for public release; distribution unlimited.

R ACEHCA, SO AN
A

)

» >
Al

S Y S Y ‘.\-.‘-J
'_'\.{i.l\‘:sfg‘:\ o \mfﬂ.'}\'.\',h\'

DTIC

T ELECTE
% FEB 29 1984
D

% a1 R sl it Rt E AEAR ML 4 BR SRR LIRS O, AR STUCERARICE U PSS MUY S S TUOL PR ST Oh DRAEAS A C AN C ity ?,‘.‘T

AFIT/GE/EE/83D-57

“

Rt

A
P
Enh A N, A, S

PLAFST

~ AT

Programmable Logic Array From State Table

JRICRE s,
S .'::'.:.:

&4 Y.
e
£y

» 4
Sotk

THESIS

Presented to the Faculty of the School of Engineering
1 of the Air Force Institute of Technology
:tc Air University
in Partial Fulfillment of the
A Requirements for the Degree of

PR Master of Science

by
Darrell C. Pelap, B.S.
1st Lt USAF
':2 Graduate Electrical Engineering

o December 1983

NigH Approved for public release; distribution unlimited.

SRS

DO

¥ A3

N T
1A A SN

o
“

Ac¥nowledgements

PLAFST has been a worthwhile project that at times seemed to
provide endless amounts of entertainment during the past months. A
strong debt of gratitude is owed to my faculty advisors, Lt Col Hal
Carter and Cpt (P) Fredeirck Zapka. They provided excellent guidance at
the beginning of this thesis project and were always willing to provide
help when I needed it as PLAFST progressed. Their willingness to let me

work independently was greatly appreciated.

Finally, I wish to express my love and gratitude to my wife,
Evelyn, who provided endless moral support, acted as editor-in-chief for
regulations and guidelines, and understood my all night stays at the

computer center.

Darrell C. Pelan

it

l" ‘ - wey -
(o
e,
L{i . Contents
L
¥ Page
3
: : ACknOWIngements L] L] ® L] L] L] L] L] L] L] L] L] L] L] L] L] ® L] * L] . * L] L] 11
List of figures e 8 o o 6 o o o 8 6 o 6 ¢ 6 s 6 s s e s s e o v
? - List Of ubles . L] * L] L] L L L] L] L] L] L] L L] L * L] L] ® L] L] L L] L] vi
1‘;: Ab'ttact L] * L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] . L] L] L] L] L] L] L) L vii
P d
1 .
.:-2 I L IMRODUCTION L] L * L] L L L] L * L] L] L] L] L] L] L] L * L] . L[] *® L] I - 1
<.
- Probleﬂ L] L] L] L] L] L] L L L] L L] L] * L] L] L] L] L] L L] L] L] L] L] - 1
I Approach * L] L] . L] L] L] [] L d L] L] L] L . L] L] L] * * L] L d - 2
o Symbolic State Table Reduction (SYH) e s o o e e e =3
'-' st.te Assigment (ASSIGN) e o ® ® ® 8 o e & e o ° ¢ @ - 5
N SFSM CIF Specification (MAKESFSM) . . . ¢ ¢ ¢ ¢ ¢ s =5
.'e scopc L] L] L] L] * * . L] L] L] L] L] L] L] *® * L] L 1O] . L] L] L] L] L] - 7
B.Ck‘round L[] * L] L] * L] L] L] L] L] L L] * L] L] L] L] L] * L] L] L] L] - 8
S Computer Aided Design Tools o o c s o s e 6 s 0909 =28
& Synchronous Finite-State Machines . . ¢« « ¢« ¢ ¢ ¢ ¢ =9
& Summary of Current Knowledge . « ¢« ¢ ¢ ¢ ¢« s ¢ ¢ o ¢ « o« =10
o
: . II. Rmuxmms L] L] L] L] L] L] * L] L] L L L] L] L] L] L] L] L L] L] L] L] L II- 1

s sy'te‘ e & ¢ o ¢ o © 4 e 8 © ¢ 6 o ° &6 ° 0 & & ° o s o o -1
_ 3180 ® ® & o o o @ 5 9 © 6 © 8 o o e o+ o ° ° 8 o o o o -2
LY option' e & 8 6 & o e o ¢ & 0 ° O » & & o 8 O s o o o o - 3
N : Inpllts @ ®» &6 o o o 6 & o ® 6 & & & 06 & 8 © e ° & 0 O & o -4

III L sYsTm DESIGN L] L L L] L L] L L L] L] L L] L L] L L L L L L] L L] III-

[y

%)
::q ov‘rv’-ew ® 6 © o o 6 o & © & © 5 & ° © & @ & 6 * e 0 @ - 1
"': Node List e o o o o o o o o ° ° o 8 e e s 6 & e ¢ o ¢ -1
}.‘) Data Dic tion‘ry e & ® o & & ¢ & ¢ 0 o ¢ & o 5 o 0 o s -2
; ‘. Nod‘ A-O ® 6 6 9 ® o s 6 o 0 & 8 ° & s o ° o v s ° o o - l.
i NOdQ Ao ® ® o 0 o » o ® © 9 & O 2 S e & & ¢ B & © & o - 6
-:."..\ Node Al ® o 0 0 o 0 5 0 0 & 6 6 ¢ e ¢ e 0 e e 0 e o 0 -8
;::-: uode AS @ @ o & & o o & & o ¢ ® 0 0 & s & & ¢ & o o -11
2"
b ‘:b‘ Iv. DETAILED DESIGN @ & @ @2 o & 0 6 o o 8 o 0+ 2 ° e ¢ & s o @ Iv- 1
- ov‘rv’.e' ® 6 6 ¢ e o e ¢ ° e e & & 6 6 o e & 2 0 s o o -1
" Reduced Symbolic Table . « ¢ ¢ ¢ s ¢ ¢ ¢ ¢ o ¢ o o o & -1
‘.-:‘ A.“.an St&tes e o o o ¢ & o e o o & o o+ e & e s o o -2
3 Step 1 - Basic Column Set . . .t .t e s 0 0 e s s s -3
"'-: st.p 2 - COS t Es tim.tion e 8 o o o 8 o o 9 o s o o - 6
st.p 3 - sot € ¢ ¢ o ¢ ¢ 6 ¢ ¢ 6 06 06 06 0 0 0 0 0 0 o - 8
- step 4 - Ordeted se.rch e o o o &6 o s & o o s o o - 9
.\' ::'.' mmple ® o & o ¢ ¢ e o © ¢ & & ° ¢ o o & & ¢ o s * -10
;:-; Wi
2N 114

.
N ' M Y \ '- \) 1. KN HTH \ \ y _\ \ e ,,- \- ORI A A R oy i I TR S PP SRR .‘-_.l
. < . i P ‘e . " e AL ., - . oo A _.-

-(\

ik i R L S A) e Y A S B S AR S I A W, DA ARk) A AR &R A D O I I T ASCRS A

.......

Acutual Cost Calculation

Y Cost Estimation ¢ « o o o o o o o o o s o o o o o o -14
Node List e & & 8 e & & 6 o 6 & & o 6 8 s s 06 s o & @ «16

D‘t‘ Dictionary @ & ° o 8 ¢ * & ¢ @ 6 o v e * e s e o -16

Node « ¢ ¢ ¢ o ¢ « o ¢ 6 o o 2 0 06 06 06 ¢ 06 0 0 0 s o0 =17

V. ANALYSIS e @ ° o o * 9 o 0 s e 0 6 & ° o s e e s * o e o @ V- 1
Overview . . ¢ ¢ ¢ ¢ ¢ ¢ o o o s s ¢ o o s o o s s o o -1
Ptocess e & o © o 8 & o ¢ 6 & ¢ & o s 6 s & 0 o o o - 1
Benchmark « o o ¢ ¢ ¢ ¢ o o ¢ o o ¢ ¢ o o o s 0 0 0 oo -8
SGnsitivity e o 5 o & © & 6 0 6 ¢ o & 6 0 6 o 0 0 0 o o =14

VI. CONCLUSIONS . 4 ¢ ¢ o o ¢ ¢ o ¢ 2 o ¢ o a o s o o o s s o o Vi- 1
conclu’ions s s o -‘ ® & @ o ° & & 8 o & ¢ * 8 s e e @ - 1
Recommendations . « ¢« ¢ ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o ¢ o & -2

Bibliography . « o« ¢ o ¢ ¢ o ¢ o o o« o o ¢ o o o o o ¢ o s « « BIB-1
Appendix A: Testing . « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o ¢ ¢ a s ¢ o o o A- 1
Appendix B: User's Manual . « &« & ¢ o ¢ o ¢ o o o o o o ¢ & o B- 1
Appendix C: PLAFST . ¢ o ¢ ¢ o ¢ ¢« s ¢ o o o o o 02 o o s o o c-1
Appendix D: SYM.C ® o o & o 6 s s 6 s s o s e s s e s s e D-1

e Appendix E: AssIGN.c . L] L] L . L] L] L] L] L] L] * L] * L] . L] L] L] L] L] E- 1
Appendix F: cFORH.c ® & @ & & & & & O & & 2 & o & 5 o ¢ s o @ P- 1

AppendixG:mESFSH.C e & @ & ¢ o o & O S o e & O B e o o o G'l

-y
-
Pty
.

s L
y’."', v
» .’ A he

iv

R 170

,

~ - - "‘
L SRR Y

oA A AR S PR NIV MR el il MM AT D AL Rl S A A ot

List of Figures

] esrcwcoascosnos LY ¥

Figure Page

1-1. PLAFST Structure Chatt e & 8 o ® o © 8 e ° & o © & s @ I' 3
I-2. PLA Finite State Machine Implementation

A of a Light Controller . « « ¢ ¢ ¢ o o ¢ o ¢ o ¢ o o o I- 6
S 1-3. Symbolic State Transition Table . ¢« « ¢ ¢ o ¢ o o o & -9
:- 1-4. Two Phase Clock . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o ¢ o s o ¢ o o -11
3 I-5. Programmable Logic Array Block Diagram . . . « + « « . -13
k'
11-1. Inp“tAtr‘yEx‘mple e @€ o o ¢ @ ¢ o 0 & & & o ¢ o o o II"S
N I1-2. Input Array General Format . « o « ¢« ¢ ¢ o o o o & . -6
oy
N IIZ-1, Node A0 + o « o o o o o = o o o o s o s s s o s oo+ III-5
v\: IIT=2, Node AD . ¢ o ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ 6 o o 06 0 o 8 o 0 o o -7
0 III-3., Node Al ¢ &« ¢ ¢ ¢ o ¢ o ¢ o ¢ o s o o o o s o o o o o -10
III-‘}.NOdGA3........o............... ‘12
X 1V-1. Three State Assignment Columns . . « « « « « ¢ o « » » IV-3
::' IV-Z. BlsiccolumSetfotR'5 e & o6 o o e o o o o & s v @ '5
w3, IV-3. Basic Column Set Generation for R=5 . ., . . . « ¢« « & -6
. IV=4, Cost Equations « ¢ o ¢ ¢ o o ¢ ¢ ¢ o s o o o o -8
GE’ IV-5. Flow Chart of State-Assignment Optimization Algorithm . -10
g\ IV-6. State Transition Table With Five States . . « ¢« ¢ + « & -11
'i, IV-7. State Transition Table With YS Applied . ¢« ¢« ¢ &+ ¢ ¢« & -11
: IV-8. State Transition Table With Y_ Applied . . . « ¢ ¢ ¢ &« -13
o IV-9., State Transition Table With Y, Applied ¢« « . & -14
! IV-10. State Transition Table With Y_"Applied . ¢« ¢« ¢ ¢ ¢ ¢« & -15
IV-11, State Transition Table With Y26 Applied . ¢« ¢« o ¢ ¢ o & -15
\: IV=12, Node A12 . . . <« o o s o o s 8 2 o o o s s 06 o ¢ o o & -18
Y
2 V-1. PLAPST Structure ChATt « « « o « s+ o o o o o o o o o o V=1
e v-2. Initial Symbolic State Table and PLAFST Reduced Table . -3
N v-3o outptltFtOIIIASSIGN o » ® @ ® 5 © & © & 8 6 & ° & v o o ".
V-4, Output From PRESTO . o« ¢ ¢ « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ & o o -5
‘. V-S. srs“curilc e 6 6 o ® e o 8 & o & 6 o ¢ & o O s v o "6
i: v=-6. Plot of SFSM Generated From Figure V-1 . . . « ¢ ¢ ¢ & -7
) v-7. State Transition Tables Used for State Sensitivity . . -15
. v-8. Execution Times for State Sensitivity Analysis -17
~ v-9. State Transition Tables for Input Sensitivity Analysis -18
V-10. Execution Times for Input Sensitivity Analysis -19
j
¢
.
*
“~
X
~ {e

List of Tables

Benchmark Comparison « « « ¢ o ¢ ¢« ¢ ¢« o ¢ o o ¢ o o &
Execution Time (Seconds) for PLAFST and ASSIGN

Number of Distinct State Assignment Column Sets
Optimum, Simple, and Gray State Assignment Comparison
ASSIGN: Execution Time and Number of Iterations
SYM Execution Times

Execution Times

Execution

Next
Next
Next
Next
Next
Next
Next
Next
Next
Next
Next
Next
Next
Next
Next

State
State
State
State
State
State
State
State
State
State
State
State
State
State
State

Times

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

State Assignment

for State Sensitivity Analysis
for Input Sensitivity Analysis

1 L] L L L] ® L] L]
2 .0 e s
3 it i e e
l‘ L L] L] L] L) L] L]
5 ¢ o v 0 e
6 L] L] o L) L] L] L]
7 L] L] * * L] L] L]
- e
9 L J ® L] .. L] * -
10 L] L L L e L]
5 3 e
12 ... 0.
13 L] L] . L L] L]
14 L] L L L L L]
15 L] L] L] . - L]
Method Comparison

vi

.

dd g g <

L - i - B S

]
GMEeESerNErSESPLLLLLW

AFIT/GE/EE/83D-57
P Abstract
=~ Programmable Logic Array From State Table (PLAFST) is a computer
e aided design (CAD) tool that takes a symbolic state table as input and

produces a very large scale integrated (VLSI) circuit implementation of

o the symbolic state table. The state table is first reduced symbolically

T

using equivalence partitioning. A near optimal binary state assignment

is made based on the Story, Harrison, and Reinhard procedure as modified

—y >
P

-
™~
-

by Noe and Ryhne. Distinct state assignment variables are sorted based

o on cost estimates obtained by increasing the number of adjacencies in
ff: the state transition table. Once sorted, the actual costs of valid
' @ state assignments made from the sgtate variables are calculated. Since
Ef state assignments with the lowest cost estimates are investigated first,
\!
ﬁ an optimal solution is found with a small number of iterations. This
N binary state assignment is demonstratably less costly than either simple
N or gray code assignments of the state variables. The VLSI circuit
~
;: consists of a programmable logic array (PLA) and clocked buffers. The
o _
= state buffers are properly interconnected. The final outputs are Chip
' /_\
;% Layout Language (CLL) and Caltech Intermediate Format (CIF) descriptions
N »
;3 of the integrated circuit. PLAFST also plots the final integrated
l;- circuit.
' f\
J‘!
(%

y) A

‘ TS
&
W
N
A vii
e

S

[N

L3P S R RN S Y

..........

......

o,

" A T Y

e P B

P

FEVR.

G &, .44

Ty
il

Py

TS 3

VS s B v

RS

FTHFETF S A

o et gl

"‘. 4
A

>

.

PR - ‘-. g '-. _-. .-. _-. <~ - L) ‘.‘ - - .Q - .n ‘.- P B A '..) o . . -
W . \..\ A SRR (NS ’ ..\~ ‘.‘1\ \.-'l.\n \..\ . RRASRTE T ..

INTRODUCTION

The primary task of this thesis is to develop a computer aided
design (CAD) tool that implements a synchronous finite-state machine
with a programmable logic array (PLA). This CAD tool operates on the
AFIT VAX 11/780 running under the UNIX operating system. It functions
in the same manner as other AFIT CAD tools, such as Chip Layout Language
(CLL) and PRESTO. The user's manual has the same style as these

programs.

The input file to the CAD tool developed by this thesis, PLA From
State Table (PLAFST), contains inputs, symbolic states, transitions, and
outputs. The input file may also include an error state for transitions
from fllegal states. PLAFST provides several output files showing state
table reductions, state assignments, and other results of the
sinimization process. The final output files include a CLL file, a
Caltech Intermediate Format (CIF) file, and a plot of the final circuit.

The PLA i{s designed with nMOS very large scale integration (VLSI)
technology with a selectable lambda. The default PLA generated by
PLAFST includes the combinational logic and clocked buffers for the
state, input, and output signals. These buffers are standard cells

from the Stanford nM)S Cell Library. The buffers that contain the next

1-1

...................
''''''''''

f

‘f.l B

o %
S A A
'}- HAARLHY)

L . SIS -
Tt F X XX AN
F ‘];_'i‘\.") _':':_': .

and present states are properly interconnected. An option, -s, causes
PLAFST to generate only the PLA. The designer can then use this PLA in
a CLL program. PLAFST also determines, via PLAGEN, if the synchronous

finite-state machine (SFSM) exceeds size constraints.

PLAFST is a shell script running under the UNIX operating system
which controls the execution of programs residing omn the VAX 11/780.
These programs are a mixture of programs currently on the AFIT VAX
11/780 and new programs. All new programs are designed using Structured
Analysis and Design Techniques (SADT) (Ref 2:63) and written in C.

PLAFST causes the following tasks to be accomplished:

1. Reduces the symbolic state table

2. Assigns states

3. Reduces the combinational logic.

4. Generates the PLA CIF specification
5. Generates the SFSM CLL specification
6. Plots the SFSM

7. Generates the SFSM CIF specification.

Pigure I-1 shows the relationship between PLAFST and other resident
programs on the VAX 11/780. PRESTO, PLAGEN, and CLL previously existed

on the VAX. CFORM translates PRESTO's output to the format required by

I-2

i v N = N 2N AR =i S i e S i e e A 2 T R A T ST AR A A

N
A
N PLAGEN. SYM and ASSICN comprise the bulk of the programs created during
;‘ BN this thesis effort. MAKE SFSM decodes SYM's output and the SFSM_PLA CIF
{
N file to generate the SFSM CLL file. The SFSM CLL file includes the PLA,
\
EE buffers, and the state variable interconnections. SYM, ASSIGN, and
" MAKE SFSM are discussed in the following paragraphs.
State
- SYM ASSIGN PRESTO CFORM -
Table
'\'
~
> PLAFST
.
>, (Shell Script)
N
"
O @
<
2
9" CIF Specification
. CLL MAKE_SFSM | o PLAGEN
:;' Plot | - -~
» o=
Figure I-1. PLAFST Structure Chart
f: Symbolic State Table Reduction (SYM). The symbolic state table
_j is reduced by equivalence partitioning (Ref 3:22). The first step in
%‘ equivalence partitioning groups all states in equivalent partitioms.
For this step, states are considered equivalent if and only if identical
outputs are generated for each of the possible inputs (Ref 3:19).
1 Subsequent steps modify this definition slightly. States are equivaleant
-". -\"..
j: et if and only {if they identically transition between partitions
%
I-3
.]
"
13
Ly % e ey

)‘ 1(v{ 'q._-f'.f o ? f\.-*‘.‘*q'_‘-:_.-:.'q'\f_’q' .". -

"~ . R AT AT T AT et et T TN SR B N TR
- ‘.'v.-.'-.._'. A _.\.'- \..\.- et _.. S R Y S ., .;

NN

LAeA 1 i3

(Ref 3:20). The symbolic states are repeatedly partitioned using this

definition until no further change in the partitions results. The
minimum set of symbolic states is chosen by taking one state from each

partition.

One state may be designated as an error recover state in the event
that an undefined state is entered. The total number of states possible
ia any binary SFSM will always'be a power of two. There is no guarantee
in the symbolic state table and especially in the reduced table that the
number of states will be a power of two. Consequently, there will
probably be some states that are undefined. In case the SFSM
erroneously transitions to one of these states, it should be designed to

transition to a specific state to recover from this error.

However, the algorithm used by PLAFST to assign an optimum state
assignment will be degraded by a designated error state. The algorithm
uses undefined states as don't care conditions in the Quine-McCluskey
state table reduction. A designated error state causes all states not
defined in the input file to transition to the error state. Therefore,

the algorithm can not use these states to minimize the costs of the PLA.

The possibility that the number of states will equal a power of two
must also be considered. In this case, the SFSM has no undefined states
to which it can transition. Therefore, the error recovery state

designation is ignored.

I-4

h

E?g: _ State Assignment (ASSIGN). The states of the symbolic state
fni :;: table are assigned binary values based on the Story, Harrison, and
I Reinhard (SHR) optimum state assignment. The SHR method was originally
E_é optimized for use with J-K flip-flops (Ref 4:1365). P. S. Noe and V. T.
\:\' .

Rhyne optimized the SHR optimal state assignment algorithm for the D

flip-flop in 1976 (Ref 5:306). PLAFST uses the Noe and Rhyne version of

;EL the SHR algorithm because of the PLA's inherent D flip-flop
ﬁfl charscteristic.
3
'S’: The algorithm is based on the comparison of a series of cost
‘:T‘ estimates for each of the state assignment columns. The costs estimates
ii{ are based on the number of first and second level gates required to
%ﬁi implement each state assignment column. This cost estimate is well
o cf, suited to a PLA which is basically a two level NAND/NOR gate array. The
.i;: state assignment column is best explained by an example. A four state
'gsi SFSM has two columns of binary digits, if the states are listed by row.
‘:?) . This 1is true for any binary state assignment scheme that might be used.
iés Each of these columns is a state assignment column. Once the cost
‘2§S estimates are generated, they are sorted in monotonically nondecreasing
7r\ order. An ordered search 1is performed to find an optimal state
Lﬁi assignment. There may be more than one state assigument that satisfies
’S; the criteria of optimum state assignment. This algorithm does not
N
‘\ consider outputs.
-
fia SFSM CLL Specification (MAKE SFSM). PLAFST automatically adds
1 i clocked buffers to the PLA generated from the assigned state table. It
:5§ '%T also interconnects the state buffers. This feature may be disabled by
A

A ol
P

I-3

.......

use of an option, =-s, in the command line to PLAFST. The clocked
buffers used are PlaClockIn and PlaClockOut from the Stanford nMOS Cell
Library (Ref 6). Since a PLA has a regular structure, the distance
between adjoining buffers 1is a constant. These buffers are iterated
using CLL ststements with dummy variables. Buffers are also added fof
each of the input and output signals. In a similar manner, metal wvires
can be added to interconnect the state buffers. PLAFST replaces these
dummy variables with constant values wultiplied by the number of SFSM
states. The regular structure of the PLA, clocked buffers, and

interconnecting wires is shown in Figure 1I-2.

TR
hhshhshsh 3

L 4 4 4
le L)| 1 1 | Ti— Ry
i T =
—.'/JV_TL | | 1 L T Ry
<Xﬁ§:]l A 1 B | | § T 1 O _ a 1 R,
s TR)
<J§{i51—1 T T R T 1T 0 1 1 2 R
sl TTTTV TV Ty ko
“'TAN‘:lr T T | g R s
@*] T T 1 | T4 Ry
AR | T T I T - O G S
:)
| C TL TS "'—JY“ ST HLg Hiy, Fly FL,

Y,

Pigure 1-2. PLA Finite State Machine Implementation
of a Light Controller (Ref 7:Plate 8)

I-6

« .=
......

LWL S -

Py

R LY
ot ata alestaCol’sCath

_\.n" Y ":".‘i

A A AN A

“."n"nln“l"l ‘o

LI R

i

a’ -":‘l

P

P | AAnhs

C:} - | PO

[
o

= -

4
-

.‘.
-

,."

Scope

This thesis is limited to completely specified synchronous
finite-state machines. The number of computations required to
completely minimize a state table quickly grows with the number of
states in the table, much like the classic "traveling salesman" problem.
This makes state minimization of completely specified SFSMs practical
only for SFSMs with a small number of states. For this reason, PLAFST
reduces the symbolic state table with a partitioning scheme that does
not guarantee a minimum cost solution. The state assignment algorithm
guarantees a minimal solution for the reduced state table. A minimal
solution is one with the least number of AND and OR gates required to

implement the state table with a PLA.

State minimization of incompletely specified finite-state machines
is much more complex than completely specified finite-state machines due
to state-splitting (Ref 1:406). An unspecified state is a state whose
output is not designated as true or false. Since the unspecified state
can be specified as a 1 or 0, the state must be split into two rows in
the symbolic state table. One of the new rows has the state output
specified as a 1. The state output of the other row is a 0. If a row
in the symbolic state table had two unspecified states, four new rows
would have to be added to the symbolic state table in order to account
for all possidble combinations of the two uuspecified states.

State-splitting can quickly expand the size of the symbolic state table

and vastly increase the number of computations required just to reduce

the table.

e J - . . L - . . - ..- i'a.'. AN A ..--.-. . ‘>'I L - - .7 ‘, .. ._- . - .-)

et

\l
SE
o R Background
54 : Computer Aided Design Tools. This thesis is concerned with the
development of a computer aided design (CAD) tool that implements
N synchronous finite-state machine designs with programmable logic arrays
“
:T (PLA). This CAD tool operates in the Air Force Institute of
_ Technology's (AFIT) CAD environment. Currently, AFIT CAD facilities
f are capable of designing very large scale integrated (VLSI) circuits.
. These facilities operate under UNIX on the VAX 11/780 computer. Many
’ of the CAD tools presently used at AFIT, and UNIX itself, are writtenm in
e
) the C language.
€.
4
Gi’ The Caltech Intermediate Format (CIF) is used to specify VLSI
o
L
: circuits at AFIT. CIF files are very exact specifications of the
.
b actual masks used to fabricate an integrated circuit. Like assembly
X language programming, CIF programming is very tedious. Fortunately, a
. higher order language that generates CIF files exists on the VAX 11/780.
..l
.: This language, called the Chip Layout Language (CLL), is an English-like
4 language that allows the use of symbols, constants, and arithmetic
? expressions rather than the direct coded chip layouts of CIF. The CAD
- tool developed by this thesis functions as a higher order language that
A creates another level of abstraction between the designer and CLL,
3:‘
Y
u.'
N
e <
- I-8
r

".
‘.
<,

-

LN g
IANAAL P

Py)
. “. ~
. e

.

Synchronous Finite-State Machines. The synchronous finite-state

machines implemented by this thesis are devices that transition between
stable states when triggered by a clock signal. The synchronous
finite-state machine (SFSM) accepts inputs at the beginning of a
transition, generates outputs during the transition, and finally arrives
at a new state. The inputs and outputs include the present and next
states respectively. All states, inputs, transitions, and outputs are
completely specified. Examplés include computer control units, traffic

lights, and digital watches.

Present State Next State/Output
0 1 «—Inputs
LG LG/1 LY/O0
LY LR/0 LR/0O
LR LR/0 Le/1
LG = Light Green Input = 1 Time Out
LY = Light Yellow = (0 Not Time Out
LR = Light Red Output = 1 Walk Sign on
= 0 Don't Walk

Sign on

Figure I-3. Symbolic State Transition Table

A SFSM is generally designed using either a Mealy or Moore state
diagram which graphically depicts each state, state transitions, inputs,
and outputs. A state diagram can be directly translated to a symbolic
state transition table, Figure 1-3. Each state symbol represents an
actual physical mode of the SFSM. For example, state LG represents the
traffic light mode in which the green light is on and the red and yellow

lights are off. The inputs and outputs are coded in a binary format.

1-9

RN
4
' :':‘_': The input codes designate the columns of the Next State portion of the
- v {. table. The next state and output, separated by a slash, are listed in
,, ; the appropriate column and row.
%
o2
- Figure 1I-3 is an example of a symbolic state transition table that
:": describes the operation of a simple traffic 1light. The possible
(%}‘ situations or states for this traffic 1light are listed in the Present
5. State column. A Time Out signal is the only input. The symbolic state
-i_i_:' table shows all possible transitions from the present to next state
::’.::a: given that the input is a1 or 0. The table also shows when the walk
.J sign will be turned on by the output code following the slash in the
;:z Next State column. The program developed by this thesis uses this type
.
::E of information as input.
oy 6
.’~'_::§ Summary of Current Knowledge
‘ : A SFSM is fabricated by digitally encoding the information shown in
:f.w. Figure I-3, minimizing the encoded information, and then generating a
:::‘: VLSI circuit that implements the SFSM. The two basic circuits of an
SFSM are the combinational logic and memory elements. The combinational
'._\- logic transforms the state machine inputs and present state into the
BN .
'_5:: outputs and next state. The memory elements retain the present state of
the synchronous finite-state machine until the next transition. When
s the clock pulse is received, the next state furnished by the
\ - combinational 1logic becomes the new, present state in the memory
;:: {-‘\: elements.

1-10

R O LR a1 D O A e A N S o g, gU ol gt At A I ATl G -t S ..V_‘*'j;.vz_f_._'—w_.

1 h

-

5

2 N

;‘ SFSMs can be realized in several ways. One way is to create a
)E programmable logic array (PLA). A PLA has savers]l zdvantages over other
i: methods, especially when VLSI constraints are considered. VLSI circuits
X are much denser if the circuit is composed of a basic cell that is
,¥; repeated in a matrix array. Since only the basic cell must be designed,
?l array structures also require less time to design than a circuit made
-, from discrete components. Memory circuits and PLAs are examples of’
J; cells used repeatedly in a matrix.

- The tw - hase clock that controls the PLA input and output buffers
g has two major advantages. The first advantage is the latch formed by
,: the clocked input and output buffers. This 1latch 4is an inherent D
o GE} flip-flop. Since this D flip-flop can be used as the required SFSM
é semory element, the PLA implementation of a SFSM does not require
h; external memory. The second advantage is that the SFSM is insensitive
- ’ to data propagation delays in the PLA matrix. However, this is only

true 1if the clock cycle is longer than any propagation time through the

A AP S

PLA combinational logic.

18K

L1 T T T Phaset
AF'T f-lA, [Phase 2

""‘.‘V'~{- "'ﬁ .ﬂ ." ;

D% |

Figure I-4. Two Phase Clock

Ak g

a"a’a -“.’a"- .
‘%I ¢
L WY

1
-

The clock consists of two phases which are never "high" at the same
time and are both "low" for a short time between phases. This is shown
in Figure I1-4. The input and output buffers are clocked by different
phases. For purposes of discussion, the input buffer will be clocked by
phase 1 and the output buffer will be clocked by phase 2. The clocking
mechanism for the buffers are pass transistors in the data path. These
pass transistors are activated only when the controlling phase is high.
Data 1is passed to the buffer when the pass transistors are activated.
Any changes in the data will also be passed to the puffer while the pass
transistor is activated. Once the clock phase transitions low, further
changes in the data will have no affect on the buffer and the data in
the buffer is used by the next stage of the PLA. For this reason, data

is considered clocked into the buffer on the falling edge of the clock

GEB phase.

The block diagram in Figure I-5 shows the feedback lines which

. connect the output and input buffers. The output buffers contain the
next state of the SFSM. The input buffers, which contain the SFSM's
present state, act as D flip-flops. They retain the present state of

the SFSM during phase 2 when the next state and outputs are generated by

the PLA matrix. The SFSM transitions between states during phase 1 when

the next state is clocked into the input buffers via the feedback lines.

The input buffers function as D flip-flops by outputting the same
information that is clocked into them and remembering this data until

new data is clocked in.

I-12

YN

2%
p -5"1

(¢ﬁ

Phase 1 Phase 2
Inputs | Input Combinational Output Outputs
------ w Buffer |--w- Logic b~-2 Buffer |--cccc-p=

Figure I-5. Progra-iable Logic Array Block Diagram

A PLA's insensitivity to propagation delays is a result of the two
phase clock discussed above. Information from the input buffers begins
to propagate through the PLA matrix at the beginning of phase 1. At the
end of phase 1, the data is clocked into the input buffer and the input
data can no longer change. Data is clocked into the output buffers in
the same manner during phase 2. The data clocked into the input buffers
has until the end of phase 2 to propagate through the PLA matrix. As
long as the time between clock phases 4is longer than the propagation
time through the PLA, differences in data propagation times will have no

effect on the PLA output.

I-13

AT

D

W O

ele a A&

]

e N

Yy

-4 ‘-_n

.5
W

Systea

PLAFST 1is required to enhance AFIT's CAD capability tc¢ implement
synchronous finite-state machines. Enhancement means the SFSM designer
works at the symbolic level to specify state transitions, imputs, and
outputs. The designer lets PLAFST handle all the details of generating
the SFSM CIF specification for manufacture. These details include the
reduction of the symbolic table, optimum state assignment, PLA
generation, and generation of the SFSM CIF specification. Currently,
only the PLA generation can be accomplished by an automated tool.
PLAFST must also be user friendly and be integrated into the AFIT CAD
environment. As a user friendly program, PLAFST checks the input file
for errors and supplies meaningful messages about the type of error and

where the error occured.

Since AFIT's CAD tools for VLSI design are hosted on a VAX 11/780
running UNIX, PLAFST must also execute under this operating system.
Three of the seven tasks 1listed in Chapter 1, Approach, can be
accomplished by programs already running on the VAX 11/780. This leads
to the idea that PLAFST should be a shell script that calls other
programs to accomplish specific tasks. A shell script also aids
development and testing of the entire program. Programs for each task
can be tested individually as they are completed. The shell script,
itself, can be tested by the use of "stubs" or using the ECHO command to

display the desired command. In this manner, the behavior of the shell

II-1

e e e e T T T e e T e e A T A e T e
B T TG 0 e T L \.:.}_w{,\ BRSOk R R \J

.
et

T T AT

P

PR ‘.’!. Nt

".'._"'

a .."-,"'.' '.’5 Sl'r'-

*

Y0

“"'
%% % ¢)

A

AN

a's

‘:‘)‘,

script can be tested without actually ruoning the called programs.
SADTs are wused to strengthen these modular development and testing
concepts. Maintenance of PLAFST and 1it's related programs is also
enhanced by not proliferating computer languages within the AFIT CAD
environment. Since UNIX, PRESTO, and other CAD programs are written in
C, all programs related to PLAFST are written in C. This includes the

shell script which uses C like commands.

Size

There are three size limits that must be considered. The first is the
physical size of the SFSM. PLAFST assumes that the SFSM is a contiguous
device that is fabricated on single die. No provisions are made to
split SFSMs across more than oﬁe die. It is the designer's
responsibility to determine if the SFSM generated by PLAFST exceeds this

criteria.

The second size consideration is the host computer limits in terms of
time and resources. Programs that are used by PLAFST, such as PLAGEN
and PRESTO, may have additional size constraints. Obvious indicators
would be excessive time to execute PLAFST and messages from the UNIX
operating systen. Since PLAFST provides an output file from every
program module, the user should be able to easily determine which module
exceeded it's own limits or those of the host computer. An additional

tool is the PS command. This command shows which program is currently

' running and the elapsed execution time.

11-2

i

s
f X The third consideration is the actual scaling factor for lambda used in
;SE& the generation of the SFSM. The lambda size must be supplied by the
fi;i user.

~: Options

';jz PLAFST has four options. The first option, -s, allows the user to
;E§; stop execution of the program after the PLA has been generated. The
- final PLAFST output is the SFSM PLA CIF specification without buffers or
,%55 feedback lines. The SFSM PLA could then be used with different buffers
%E: or connections than PLAFST provides. The default is to add the Stanford
et ‘:’ nMOS Cell Library cells PlaClockIn and PlaClockOut and interconnect the
iif state buffers using poly and diffusion wires (Ref 6).
A

=

‘ - . The second option, -d, is for debugging. Print statements used to
;q& debug PLAFST are controlled by IF statements that test for the debug
;Eg : switch. The print statements output to the standard error file and show
“\; the effect of critical data manipulations., ASSIGN, the program which
:}i implements the optimum state assignment has an additional debug feature,
Eg; mass-debug. The option 1is not invoked by PLAFST. It can be used by
ffi running ASSIGN with the -m and -d options. Mass-debug must be used with
Eii: the debug option to provide meaningful output. This option will
i?;; generate massive files, so it is best to route the output to a terminal
y for viewing. Even small state tables with five states and ten
:i; Qﬁ? transitions will generate mass-debug files in excess of 150k.

:f;}:

MR R A A LA LA S N A L S M e L P P S

'1

.! f‘ ,'

IS N TR

The third and fourth options, -sa and -gc, control the state

e,

.-

HAGE APNIAPRTRE

assignment method. The -sa option merely assigns states in the same
order as the input file. For example, the first state would be assigned
the number zero and the fifth state would be assigned the number 4. The
-gc option assigns the state values using a gray code. The gray code
assignment method has no more than one binary digit difference between
8djoining states. For example, a four state SFSM would have state
assignments of 00, 01, 11, and 10. These values would be assigned to

the symbolic states in the same order as the input file.

Inputs

PLAFST is invoked by the command line:
PLAFST [-s][-d][-sa, -gc] < input.file
The input file includes the number of states, inputs, outputs, a CIF
number, and the lambda size on the first line. Subsequent lines include
the state, input, and output names. The input and output names are
assumed to represent independent bimary variables. The next two blocks
of information are the state array followed by the output array. The
input file is not sensitive to which line information is on, only the

order in which it appears.
The delimiter between any information in the input file is ome or
more spaces. A slash and any number of spaces is used to separate

output variables which are true for the same transition. An additional

I1-4

o g Yo Ea N NI S

b
}‘:-}: < special character 1is the asterisk, *, which denotes an error recovery
AN
. state. The error recovery state must be preceded by the asterisk which
;‘ may not have intervening spaces. PLAFST will send the user a warning if
-
f",-f an error state is not included. The reasons for and against an error
; state are discussed under State Assignment in Chapter 1. The general
'_i::: format and a specific example (Ref 7:87) are shown in Figures II-1 and
\’.
.':." 11-20
‘::f' 435950 2.5 /* # states, # inputs, # outputs, CIF #, lambda */
> - - -
“»
: *HG /* Designated error state and first symbolic state */
- HY /* Symbolic states */
. FG
\.‘ FY
"\3 car /* loput names */
- long_timeout
Q‘q short_timeout
v
s /* Output names */
| ho
. hi
£f0
f1
s HG HG HG HG HG HG HY HY /* Next state array */
o3 HY FG HY FG HY FG HY FG
S FY FY FY FY FG FG FY FY
- FY HG FY HG FY HG FY HG
£0 £0 £O £O £O £0 £0/s £0/s /* Output array */
h1/£0 h1/£0/s h1/£0 h1/£0/s h1/£0
- h1/£0/s h1/£0 h1/£0/s hO/s hO/s hO/s .
j;-f: hO/s hO hO hO/s hO/s h1/£0 h1/£0/s
iy h1/£0 h1/£0/s h1/£0 h1/£0/s h1/£0 h1/£0/s
Figure II-1. Input Array Example
ot The number of states, inputs, and outputs must be supplied to
4"~ ~ :a
e PLAFST so that it can determine what each symbol is supposed to

ph il I PRy
LA PR

represent. The CIF number which PLAFST uses must be supplied to CLL and

PLAGEN. PLAGEN additionally requires that the lambda size be specified.

Symbol names must be 25 characters or less and include the
alphabet, 0-9, and the underline character, _. The characters may be in
any order and case is significant. These conventions are tailored after

CLL.

#_states #_inputs #_outputs CIF # lambda
State Names
Input Names
Output Names
State Array

Output Array
Figure II-2. Input Array General Format

The order in which the symbols are listed is extremely important.
PLAFST uses the order of the state and input names to decode the
information in the array. PLAFST assumes that the input is a standard
symbolic state table such that the present states are listed vertically
and the inputs are 1listed horizontally across the top of the state
table. The first state name is associated with the first row of the
state table. The next state name is paired with the next row. In a
similar manner, the f£first input name is associated with the left most

column in the state table. Successive input names should head the

remaining columms. Input names will arbitrarily be assigned increasing

R AN
v %

-
.
-
r]
-~
. !
o

[N
s

binary values from left to right. The first input name is assigned the
binary value zero. Input names are placed in the SFSM PLA in the same
order as the input file. The first input name is the left most input to
the PLA. In the same manner, the outputs are ordered from left to right
according to their order im the input file. The first output name is

the left most output from the PLA.

The first array is the state transition array. This array is
listed in order by row with each row 1listed from left to right. The
output array follows the state transition array and is organized in the
same manner. However, there are some differences. The output variables
are listed only if they are true for a given transition. There may also
be more than one output variable true at the same time. In this case,
the variables are separated by a slash, /, and by any number of spaces.
A zero must be used to show that none of the outputs are true for a
given state. This 1s required to preserve the order of the output

array.

PLAFST determines if the correct number of states and outputs
appear and sends an appropriate message to the user. An 1incorrect

number causes the program to stop execution.

AR A R R AR 3 i b Nl S A N R A - ~ MR R AL AR N
l\ -

N o)

~
\ -

.-_\
‘..:-“; .
v?;: . SYSTEM DESIGN

A mossmomooees
{
B -

. Overview

o
' PLAFST was designed at the system level using SADTs. This approach
2%?, starts with the basic inputs, outputs, and some means to comnvert the
A
5

! inputs into the outputs. The means, in this case, is PLAFST. This is

shown in Figure III-1, Node A-0. Node A-0 is decomposed into more

: ; detailed levels. Each successive level gives more information about how
‘jzz an input is transformed into an output. This progression is seen in
fﬁf Nodes A0, A1, and A3. Node A2 is not broken down past the AO level
: ig since the only program in A2 is PLAGEN. PLAGEN is an existing program

;; that will not be altered during the development of PLAFST.
N
A @

{;} The remainder of this chapter is devoted to the SADT documents.
‘?3 These include the Node List, Data Dictionary, and the node descriptioms.

i , The Node List contains the names of all nodes. The Data Dictionary

E;ﬁ defines all information passed between nodes. The node descriptions

AN
fi; elaborate on the tasks accomplished by each node.

EE% Node List

}ii Node A-0: PLAFST - Programmable Logic Array From State Table

Node AO: PLAFST

iZ; Node Al: Manipulate State Table
Eé: ;i? Node All: Reduce Symbolic Table

%

<

N III-1

OO
.

NS
‘-.!J'
i-:"

<

Y

AL

ofal a0l

>

'-'j';f,’.,. ',- ,.] ,‘

H
s*a¥a%a i tae]

e

~ -I'_"‘_ l‘. .‘_ l._ “_a

L-—n’ .ﬂ ..' m_ : |-

&

o

-

Bl

Cr

Data Dictionary

Node A2: PLAGEN

Node A3: Make SFSM

Node A31: Add Clocked Buffers
Node A32: Connect State Buffers

Node A33: CLL

Node A12: Assign States
Node A13: PRESTO

Node Al4: Change Format

All Nodes:

Keyboard Input: The command line entered to the UNIX operating

PLA CIF Specification: The CIF file that describes the PLA that

PLA Truth Table: The truth table that describes the SFSM PLA after

Reduced PLA Truth Table: The PLA Truth Table after the combinational

Reduced Symbolic State Table: The original input state array after

SFSM CIF Specification: The CIF file that describes the SFSM PLA

system. The command line includes PLAFST and the input file.

The command line may include the option to stop program

execution after PLAGEN.

implements the SFSM.

the states have been assigned.

logic has been reduced.

it has been reduced through equivalence partitioning.

including the clocked buffers and interconnected states.

III-2

N

PR

GE’ SFSM PLA and the clocked buffers. The state buffers are not

SFSM Plot: A plot of the SFSM integrated circuit.

Symbolic State Table: The original state array from the input file.

Node A0, Al, and A3:

PLAFST Control: The sequence of control by the shell script.

Node Al:
Dot Format: This filé is the Reduced PLA Truth Table in the
format used by PRESTO. The format must be changed before

PLAGEN can use the information in the truth table.

Node A3:

Partial SFSM CLL Description: A CLL program that includes the

yet connected.

I11-3

‘
bes
N
F\.
3

“
N

-
e
.,
.

PLAFST is a UNIX shell script that initiates various other programs
to generate the files shown from the symbolic state table 1input. The
files are generated in the order shown from top to bottom. The final
outputs are the PLA implementation of the SFSM specified by the input

file. Reference Figure I1I-1.

III-4

'C

'A‘-‘ .

NN

Node: A-0

Title: PLAFST - Programmable Logic Array From State Table
{ ’ Date: 3 Jul 83

W Rev.: 1.0

"‘..
7
."

&

73

25 I1 Keyboard Inmput Reduced Symbolic
- State Table 01

[
£

Y
'y ea

12 Symbolic State PLA Truth Table 02
Table

g)
L4

PLAFST Reduced PLA Truth Table 03

5

3
..

PLA CIF Specification 04

#

TN AN

e SFSM CIF Specification 05

.,

SFSM Plot 06

QO
B
3, % %

RIS A

..
.C

v
[4

»

o 1

o e g
’¥,‘i (N
. &

s,

Pigure 111-1. HNode A-0

w I11-5

SRR S LR ER Y 0 G £ T R P N N TNty i
Cat > N e A S AN e e

‘-] A e S0 WU W TR LW W T SUTW U TE L, T a ™
e Rd B A NS A 4t B AU LA e ML LSS SR ach A RS Rt SRR AR JCR S C O AL KD R L R

-« v
L 3

e s
AN A
ot

Bode AQ

This node shows the primary breakdown of PLAFST. PLAFST consists
of three main modules. The first module manipulates the input file into
a PLA truth table. The second module generates the PLA structure.
Finally, the third module adds the necessary buffers and comnections to

complete the SFSM. Reference Figure III-2.

Node Al - Manipulate State Table. This node accomplishs the first

o of the three tasks listed the Approach sectiom of Chapter 1. The input

symbolic state table 1s reduced using equivalence partitioning. The
M states are assigned optimum binary values and the PLA Truth Table is
generated. The combinational logic is reduced to make the Reduced PLA

@ Truth Table file.

) Node A2 - PLAGEN. This node consists of the program PLAGEN.

PLAGEN creates the PLA Structure from the Reduced PLA Truth Table.

Node A3 - Make SFSM. This node modifies a CLL program with dummy

variables in order to add clocked buffers and state intercounections to
the PLA generated by PLAGEN. This node may not be executed if the

. option, -s, is used in the command line. In this case, the final output

is the file created by PLAGEN.

Rl
) [DAl Pl 24 pa T SRR i A A A A T i R S I R Y . . T ar o

-:-\"
LY
. Node: AO
N Title: PLAFST - Programmable Logic Array From State Table
Date: 3 Jul 83
Rev.: 1.0
(h 11
PLAFST Control
i]
N
' %
ﬁ} 12 Symbolic Manipulate Reduced Symbolic
A State Table State State Table 01
- Table —
PLA Truth Table 02
i
Reduced PLA
1 Truth Table 03
(
_ PLAGEN
— PLA CIF
Specification 04
2 -~
‘ 1]
Make SFSM
SFSM CIF
Specification 05
e ——
SFSM Plot 06
3

Figure I1I-2. Node AO

111-7

- - e
Ot [A
e W,
e o D)
. A I 0

: * .i."b ‘ g

-

4

MO

LaPd

»
»

’

‘s

R

fod
RARTAR

‘?

;

'\'.I‘.Q'
P
.8

L}

Node Al

This node shows the system level details of transforming the inmput
file 1into the Reduced PLA Truth Table. The first module reduces the
symbolic state table in the input file. The second module is the most
complex. It contains the algorithm for assigning optimum binary values
to each of the symbolic states. PRESTO, the third module, already
exists in the AFIT CAD library. It reduces the combinational logic of
the PLA Truth Table. The final module, Al4, transforms the format used

by PRESTO to the format used by PLAGEN. Reference Figure III-3

Node All - Reduce Symbolic Table. This module implements the

equivalence partitioning algorithm discussed in the Approach section of
Chapter 1. The symbolic states are divided into equivalent partitions
and omne state 1is chosen from each partition. These states are then

organized into the Reduced Symbolic State Table.

Node A12 - Assign States. This module performs the Noe and Rhyne

modified SHR optimal state assignment algorithm for D flip-flops. The
algorithm has four basic parts. The first determines the state
assigument column variables. The second part calculates the cost of
each of these variables. The third step sorts the cost estimates in
monotonically nondecreasing order. The fourth step performs an ordered
search on the sorted cost estimates to determine an optimum state
assignment. The solution may not be unique and does not consider the

outputs.

111-8

o e P e P A A S JC I gy St "?*."T
-Te Tl A . e . .

. ,flj Node Al13 - PRESTO. This is a program currently in use at AFIT.

i' PLAFST supplies the file generated by Assign States to PRESTO and uses

2 the output file to generate the PLA structure.

Fy Node Al4 - Change Format. Not all CAD programs at AFIT are

‘f compatible. Before the output file from PRESTO can be used by PLAGEN to

:;

3. make the SFSM PLA, the format of the file must be changed. This program
accomplishes this task.

2

-

«I

5

», <ia

188

i

.

‘b

84

e

.l
. 4
-

s
v
-

- I1I-9

SN
e

C
. .
. » 4
o e
- [} o O %

4

.
.

,‘/: 3

'}“;nlfn.'.-‘ ';:

PV N AR Y

i-,-
;

%6 |
o~

b

[Y
Jalagaly

Node: Al

Title: Manipulate State Table

Date: 3 Jul 83

Rev.: 1.0
I1 PLAFST Control
- ! \
Reduce
12 Symbolic Symbolic Reduced Symbolic
State Table Table State Table 01
1) | >
) 2
Assign States
PLA Truth Table 02
] -
2
¥
PRESTO
Dot Format
3
“ g
Change Format
Reduced PLA
Truth Table 03
4 -

Figore III-3.

I11-10

Node Al

v e

4 DAL L AN 4 '.T
F“““"""‘"-“‘““Ej‘ e Piar- 54k Ml A AN i) A AR T AT SR Y AR AN R . O
.

Node A3

RGO § S
i

,_
L]
[}
P2t
YU
o

This node modifies a CLL program with dummy variables. The dummy

variables include the CIF number for calling the SFSM PLA, the number of

-~
N
.
x>
>

clocked buffers, and the number of state buffers. Reference Figure

I1I-4.

Node A31 - Add Clocked Buffers. This modules modifies the number

of clocked buffers connected to the SFSM PLA in the CLL program. This

number is calculated from the size of the Reduced PLA Truth Table.

Node A32 - Connect State Buffers. This module adds the correct

number of wires to interconnect the state buffers. This number is also

@ calculated from the size of the Reduced PLA Truth Table.

-

III-11

v v LWL W VAT TR TR R T e e Ve T e T e T TR e e,
it R R oM A AR TS AS AC S ES U A S

'\:‘ S
o
\ Al
W
ES{\ . Node: A3
NoN .::- Title: Make SFSM
Date: 3 Jul 83
Rev.: 1.0
I1 PLAFST Control
I2 PLA CIF Add
Specification - Clocked Partial SFSM CLL
Buffers Specification
I3 Reduced PLA
Truth Table
_‘\ 1

.

Connect
State SFSM CLL
Buffers Specification
_ - .

CLL
SFSM CIF
Specification 05‘¥
SFSM Plot 06
3

Pigure 1II-4. Node A3

Ty I11-12

>t
-.‘.;
n"_.
N

LA AL A e i Bt e B S A IO A AR S AT AL AL A A PN Al SRS JP IS SAC S M it it . .‘1

DETAILED DESIGN

Overview

This chapter considers only two nodes from the system SADTs. Nodes
Al11, Reduce Symbolic Table, and A12, Assign States, provide the optimum
truth table that is processed by existing programs in the AFIT CAD
library. PLAFST uses three powerful CAD programs to accomplish the VLSI
circuit design and specification. These programs are PRESTO, PLAGEN,
and CLL. Since these programs are used as "black boxes", the system
design description can adequately specify their inputs and outputs. The
three remaining nodes were also adequately discussed 1in the system
design. These nodes are Al4, A31, and A32. They deal with file format
changes and simple scaling of dummy variables within an established

file.

Reduced Symbolic Table

This node 1is not broken into lower level SADTs because the
algorithm is a straightfoward sorting routine. This routine,
equivalence pfrtitioning, consists of two parts (Ref 3:19-23). The
first is a presort of the symbolic states. The states are partitioned
into equivalent groups that generate identical outputs for each possible
input condition. The states are then sorted a second time by state

transitions only.

Iv-1

e

The second sort partitions the states into groﬁps with identical
transitions for each of the possible inputs. Transitions are identical
if they are between the same groups as partitiomed by the previous sort.
The second sort is repeated until no changes are made in the groups of
states. Once the sorting process is completed, one state from each
equivalence partition is chosen. These states form the reduced state

table.

Primary error checking is also be done by this routine. Error
checking 1is based on the first five numbers in the input file. These
numbers, in order, are the number of states, inputs, and outputs, the
CIF number, and the lambda size. They control the number of symbolic
names and the size of the next state and output arrays. The error
checking detects if the symbolic names do not match those in appropriate

array. It also detects if the array dimensions are too large or small.
Assign States

This node contains the algorithm for an optimum state assignment
and is the heart of this thesis. The algorithm is a modification of the
SHR optimal state assignment algorithm developed in the early 1970's by
Story, Harrison, and Reinhard (Ref 4). Modifications to the SHR
algorithm were presented in a series of articles through 1977 written by
Noe and Rhyne (Ref 5, 8-10). These modifications included generation of
the basic column variable set, cost estimation, and application of the
algorithm to the D flip-flop case. The algorithm is discussed in detail

in the following paragraphs. The SADT description follows this

Iv-2

:jn ¢ discussion. Node descriptions refer back to the detailed discussion.
N

Step 1 - Basic Column Set. The algorithm is based on the concept

of a state assignment column. A state assignment column is one bit wide
and N bits long. N is the number of states in the state table. The
state assignment columns are used in groups of n where n is an integer
greater than or equal to log (R). An example of three state assignment
columns is shown 1in Figure IV-1. These state assignment columns are
from Figure IV-2 which depicts the the basic column set for a state
table with five states. A five state SFSM requires three state
variables, so three state assignment columns are used. The optimization

Noe and Rhyne algorithm is shown in the Example section, Chapter IV.

The state assignment columns are also called y-variables and are

GE} subscripted. The subscript is the decimal value of the binary state
assignment column read from tup to bottom. The top bit 1is the most
significant. Figure IV-1 also shows a valid state assignment. Reading

across the columns, each row of bits is unique.

y y y
4 9 14
0 0 0
0 1 1
1 0 1
0 0 1
0 1 0

';; Pigure IV-1, Three State Assignment Columns

‘.;j The basic column set 1is the wminimum number of state assignment
colunns that must be investigated to arrive at an optimal state
assignment. The basic column set is significantly smaller than the
total number of distinct state assignment columns. For example, a five
state machine would have 65,535 dis;inct state assignment columns, but
the minimum set has only 15 columns (Ref 8: Table 1). One can see that
if all states were investigated, state assignment problems would quickly
require impossible amounts of computer time, like the classic traveling

salesman problem.

The method for determining the basic state assignment column set
depends on whether the number of states; R, is equal to one more than a
power of two. IfR = (2 + 1) where m is any integer, then the state
assignment columns can be listed directly (Ref 8:874). The y-variables
are subscripted in the same manner as Figure IV-1.

Y 2T 2 Y seeesy o
1 2 3 Rl

In all other cases the y-variables must be generated. The formula
for generating the y-variables is shown below (Ref 8:874). The number,

n, is an integer equal to log (R).

Number of bits in assignment

R R R
n- n'1 s n-l
R -2 R=-2 +1 2

Lﬂunber of 1 bits in assignment

Iy ; [
y ."’.‘.l&l..}"

A

e

b..l‘.,

7/

The complements of each of these y-variables must also be
determined for the D flip-flop case. The y-variable complements can be

listed directly, regardless of R, by:

R
y_ where: {1 =2 -1i-1

[

The basic column set includes the y-variables generated by the
appropriate method and their complements. An example for R = 5 {s
shown below. Note that although the y-variables can be simply listed,
they can also be generated by the method used when R is even. Figure
IV-2 shows the variables generated by simply listing them and the

corresponding binary values.

Yy vy yvyvyyvyYyyyy vy Y Y Y Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0000 000 00 O O 0 o0 o0
o 0 00 0 0 0 111 1 1 1 1 1
o 0011110090 0 1 1 1 1
011090119001 1 0 0 1 1
10101010190 1 0 1 0 1

Figure IV-2. Basic Column Set For R = 5

The generation method for R is shown in Figure 1V-3 for comparison
purposes with R = 5. The variable, rl, refers to the first row as shown
in Figure IV-2. The r variables to the left of the vetical bar are Os
and the variables to the right are 1s. Each group of row variables
describes a single column shown in Figure IV-2. For example, the first

group specifies Yis

IV-5

v
"-.‘_s 4

'

TV v

‘o N
ool
N

5\ = (rilr2, r3, r4, r5), (r1, 3, r4, r5/r2), (r1, vé4, r5, r2|r3),
(r1, r5, r2, r3lr4), (r1, r2, r3, r4ir5)

5\ = (r1, r2le3, x4, r5), (r1, r3lrs, =5, r2), (r1, r4lr5, r2, r3),

(r1, r5|r2, r3, r4), (r1, r2, r3|r4, r5), (r1, r3, r4|r5, r2),
(r1, 4, r5ir2, r3), (r1, 5, r2jr3 ,r4), (r1, 5, r3lr4, r2),
(r1, r4, r2|r3, r5)

Pigure 1V-3. Basic Set Column Generation For R = 5

Step 2 - Cost Estimation. Cost estimation is used to derive the

minimum cost of a particular state assignment column. Cost 1is defined
as the number of inputs to a two level AND-OR gate array. The cost
estimation method uses a modified Karnaugh map. The inputs are assumed
to have a predetermined binary code. The input codes are arranged
across the top of the modified map exactly like a Karnaugh map. The
state symbcls, S , are listed along the vertical axis of the state
table. The modification assumes that all rows that are a power of two
are group adjacent (Ref 4:1368). "This assumption provides a degree of
adjacency between the S minterms that is as great or greater than can
exist for an actual coding of the S minterms, and consequently it
provides a lower bound on the cost of an excitation expression
regardless of the coding that may be subsequently assigned to the S
minterms (Ref L:1369)." Later steps that determine the actual costs of

the y-variable state assignment do not follow this last assumption.

Noe and Ryhne further restrict the cost estimation procedure by

requiring that unassigned states in the y-variable be assigned a 1 or 0

such that the number of 0's equal the number of 1's. They also require

3 iy that any group of states that cross the boundary between y = one/zero
(contain an equal number of states from each side of the boundary. This
is idea is illustrated in the Example section.

A

4 The additional restrictions ma&e by Noe and Ryhne result in a set
i& of minimum numbers that is equal to or greater than the minimum numbers
:3 generated by an unmodified SHR procedure. This can reduce the number of
. trials made by the Story, Harrison, and Reinhard (SHR) search procedure
EQ (Ref 9:328).

‘: The cost estimation procedure begins by assigning each state in the
SE state table a 1 or 0 based on the particular y-variable. The unassigned
:& state table rows are then assigned a 1 or 0 so that the total number of
@ rows with y = 0 equals the number of rows withy = 1, Don't care
:3 symbols are denoted by a "x". The 1's and x's are grouped together like
55 Karnaugh maps with two exceptions. The first is that groups that cross
4 the y = 0/y =1 boundary must have an equal number of terms on each
'3 side of the boundary. The second, discussed above, is that rows that
-i are a power of two are considered group adjacent.

ii Once the states have been properly grouped together, the cost
zl estimate algotithm is shown below. The cost estimation procedure is
; repeated for the complements of each of the y variables. The lesser of
'js the two estimates 1is then used as the minimum possible cost for the
'; y-variable in tﬁe ordered search.

1v-7

D A TR T R M Il Ak A AL A M B L i A N B O T, SN e ow T T WL RS

\"'

?

N

i

\.l

- e
v . NL + NT - SLT s NT > 1

: c={NL ; NT =1, SLT = 0
Dy 0 s NT =1, SLT =1
;j Where:
NT = Number of Terms

o NL = Number of Literals = m + n - q

- SLT = Number of Single Literal Terms

1 m = log (Number of Inputs)

< n = log (Number of State Variables) = log (R)

= log (Number of Literals in Group)

7,
oD

m, n, and q are integers

o

;5 Figure IV-4. Cost Equations

™

:ﬁ This cost estimate applies directly to a PLA. NL, the number of

2; Gi? literals, is the number of product terms that must be generated in the

;: PLA. The area required by the PLA increases proportionately with NL.

;? NT and SLT are related to the power consumption of the PLA. NT is the

- number of pass transistors on a given product term line. The larger NT

W is, the more power 1is required to generate the particular term. SLT

:g refers to a product term that has only one pass transistor. Power

SJ consumption decreases with larger values of SLT for a given total number

¢ of inputs.

E; Step 3 - Sort. The y-variables are sorted in nondecreasing order

;; based on the cost estimate obtained previously. A bubble sort is used

ES which generally takes O(n?) time (Ref 11:257). In this case, the bubble

t; sort does not have a significant affect on the execution time. The sort
qg} is used only once on a small number of integers. These integers are the

Iv-8
b

Ll
¢ 4 A TN A A AT e A TR L T e e e T TN T L e e S e
v 30 ~ v 5\6,. }\(N D Y SR NI . S e e S e e

...

cost estimates for each of the y-variables. When the integers are moved

- in their array, two associated character strings are moved. The
“ - overhead 1s extremely low since only integers are compared and the
Sif number of sorted items is small. For example, when the number of states
o
:i; is equal to five, there are only 15 y-variable sets to sort.

Step 4 - Ordered Search. The 1last step is the ordered search of

.) the y-variable sorted list for an optimum state assignment. The first
step is to find a valid state assignment. State assignments are made
with n state assignment colummns or y-variables. The number, n, is equal
to logz(R). The first assignument scheme 4is made by pairing the first
y-variable in the sorted list with the appropriate number of successive
13{ variables. A valid assignment has a unique designation for each state
in the state table. Not all combinations of the state assignment
(f? columns form a valid assignments. Once a valid assignment scheme 1{is
found, the actual cost of each y-variable is determined by the same
method as cost estimation except that commonality of terms {s not
considered (Ref 4:1369). This means that the restrictions added by Noe
u% and Rhyne are removed and rows that are powers of two are not considered

group adjacent.

The minimum and actual cost estimates for each y-variable in the
scheme are then totaled and the minimum and actual cost are compared.
The search stops when the actual cost is equal to the minimum cost or if
the next state assigunment scheme has a higher minimum cost than the
current actual cost. Figure 1IV-5 shows a flow chart of the search

procedure.

......

TOE VYR LY TYLVY,Y LY P “RAnra e S
e et i A A £ A AN G R S - e A A A Rt AR T i R AR REL IR)

e
o
(]
.”.
.,
‘ - ...
‘\'J_"-

Compute WIS, and A,
e
e

haas WSS | A
. The assignment
associpted with

SAN 15 optimal

et
S o M

Stop

MNS = Minimum Number Sum (Cost Estimate)
AN = Actual Number (Actual Cost)
SAN = Smgllest Actual Number

Figure IV-5. Flow Chart of State-Assignment Optimization Algorithes
(Ref 43:1370)

Example

wocooee

A five state transition table is shown below in Figure 1V-6 (Ref
9:328). Since the number of states, R, is equal to 5 which is also

equal to 2* + 1. Therefore, the state column variables can be simply

e
\-‘;‘v
Iv-10
o ‘&:}:ﬁ:ﬂ»ﬁi‘:m:'d} -“‘-A.l..'*‘{: AP N IS 'n'\'l’ PARAT AT PP AT A W S VRLIAAE SR PRI o, e

. .'..\
;}} listed. They are shown in Figure 1IV-2. If a PLA were a J-K flip-flop
\':‘: ’
:%: . device, only these columns would have to be investigated. Since a PLA
7N -
{ acts like a D flip-flop, the complements of these state column variables
E%, must also be investigated. The complements are obtained by inverting
a
ﬁ% the bit values in the state column variable.
o+
o PS NS
N 1 5 1
i 2 4 2
L7 3 3 3
4 2 3
O 5 1 5
=
f{ﬁ Figure 1IV-6. State Transition Table With Five States
=
lfi Figure IV-7 shows the state transition table with the state column
?ﬂj variable y applied against the transition table. The y varisble
'%Q overlays the present state column of the state transition table. States
{ ‘E? overlayed by a '1' are replaced by a '1' in the Next State portion of
Eks the transition table. Likewise, states overlayed by a '0' are replaced
o
';: with zeros in the transition table. Note that the number of states in
. the transition table is now a power of two. The new states are labeled
- \..
AT
_:) with a 'x' and represent don't care conditioms.
- PS NS
o o |1 o
A 0 0 0
et 1 1 *
z-7 0 0 1
L4 1 0 1
A x 1 1
W x 1 1
o x 1 1

»
%
4

Pigure IV-7. State Transition Table With Y. Applied

5

IV-11

Actual Cost Calculation. .The actual cost for this assignment is

calculated from the table {n Figure 1IV-7, The ones in the state

{ transition table are assigned binary numbers in an array like manner.

! The binary numbers are then changed to a gray code (Ref 12:338). The
,1 rows and columns in the transition table are labeled 0 to 7 and 0 to 1
~ respectively. For example, the one next to the asterisk in Figure IV-6
-

;Z would be assigned a binary value of 0101. This binary assignment is
f: derived from the placement of the one in row 2 and column 1. The binary
o value is therefore 2 * C + 1. C is equal to the number of columns,
% which is two in Figure IV-7. Note that the first three bits from the
i left designate the state and the last bit denotes the state transition
o column.

>

X

>

J This binary number is changed to a gray code through an
o @ exclusive-or operation. The exclusive-or operation is applied to the
; most significant bit and a zero. The exclusive-or operation is repeated
{

{ for the most significant bit and the next most significant bit. This
v operation is "rippled" through the portion of the binary number that
= designates the state. Bits that denote the column are not changed.
.

~ This is done so that table values in the same column remain adjacent.
o In Figure 1IV-7, only the left-most three bits are changed to a gray
.ﬁ code. The results of the exclusive-or operations form the new gray code
:ﬁ variable. The 2zero 1is in effect pushed through the binary variable.
3 This is shown below:

[~

s

"~

-

- start zero - 0 / 0101 - binary variable

0111 - result of exclusive-or

1v-12

L]
L]
L]
-
L)
»
.
A

:::4

N

J‘\n .

:_‘. .:

; ' PS NS

b2 0

A 0

o 1

S 0

.\ 1

R - x

\ J:: x

3 ?ﬂj x

N

N

= 2+42+43+3=10

N, Figure IV-8. State Transition Table With Y, Applied

\2: Ouce all the ones in the state transition table have been converted

-;j:: to a gray code, a standard Quine-McClusky algorithm is used to determine
- @ the minimum cover required to implement the table. The cost for the
o5 table is calculated using the equations in Figure IV-4. The groupings
<

'_'::.j and cost calculations are shown in Figure IV-8. Each group of four
N terms has a cost of two. The group with two terms costs three AND-OR
':'-:; gates. There are three groups which makes the total cost ten. The
.

:: computer representation of one of the four term groups is -11-., The
. cost of this group is simply calculated by counting the number of 1s or
:-,: Os in the in the term. Thus, this group has a cost of two AND-OR gates.

The cost calculation is repeated for the complement of Yoo Yo¢ ° The
o state transition table for Y26 is shown in Figure 1IV-9. This figure also
N

- shows the grouping and cost calculation. The y-variable with the lower
- cost is \sed for the cost calculation. Im this case, since Ys and Y6 OTe

1.

e ot equal, yg is chosen.

{,:' 'J‘ .

~'

.'c'v

= 1v-13

.t{'q

T AT Nt AT A e e T TN ’
Y \i__.h:\.h \.‘h.-".‘}_n\a"A_A_.L'.A"J\.A.A W

D
-

.’5

) Ky
AR

o e

et

Ut TN AR S AL AL Sl SN A L i s A 2 2 ki, S5 S taen S Tl e 34

1

X RXKOFRORR lw
w
[=]
[-X-)

1
1
1 1
2+3+4+2+3=10

Figure 1IV-9. State Transition Table With Y26 Applied

Cost Estimation. The cost estimation procedure is accomplished in

the same manner as the actual cost estimation. There are, however, two
exceptions. First, the state transition table is rearranged so that
each half of the table has all “one" or all "zero" rows. The "type" of
the row is determined by the y-variable. For example, the first row in
Figure 1V-9 is a one row. Figure IV-10 shows the rearranged table of
Figure 1IV-7 and 1its cost estimation. The dotted line denotes the
zero/one boundary of the table. All rows in the upper half are either a

zero row or a don't care row. The lower half has only one and don't

care rows.

1IV-14

P e T AU AR N

% % e
.‘ " I‘ »

1 L)

LM

-
FEAATS - IR

Ld o s
O NS B

L

I

L S
o,
v'\'f .

-.':.".- e '.. e
y PN p YL

.........
.....................................

3+42+2+3=10,
Figure IV-10. State Transition Tadble With Ys Applied

The second difference is that groupings that cross the zero/ome
boundary must have an equal number of terms on each side of the
boundary. Figure IV-i1 shows the rearranged table and groupings for Y6 °

Since the complement of the Y; has a lower cost estimate, its value is

used as the cost estimate for Yg*

4
/2]
-
(%]

|

]
)
A

XA OO =X =

2+2+2=6

Figure IV-11. State Transition Table With st Applied

1v-15

..................

::: ~~~~~~~~ S e e e e S i e N T LA i Py
o~
n\‘n
‘:::
ree e Node List
y » ;-
{' - R S e > S
%7 Node A121: Generate Basic State Columns
o Node A122: Estimate Costs
& Node A123: Bin Sort
'Eﬁ Node A124: Ordered Search
as Node A125: Format
N
&
W Data Dictionary
;.-:'J
.-.:4
)
:: Node A12:
v ‘Eb Basic State Columns: The binary and decimal representations of the
if; basic set of distinct state columns discussed in Step 1.
ﬁf: Cost Estimates: The cost estimates generated in Step 2 are
N
) associated with the Basic State Columns.
-E&é Sorted Cost Estimates: A 1list of the Basic State Columns and
¥

associated Cost Estimates in nondecreasing order based om Cost

»

Estimate. This list is generated by Step 3.

Optimum State Assignment: A subset of the Basic State Columns that

»

SANS
l.. “;{ "n ".

form,a valid, optimum state assignment and its actual cost.

g
]
Id

The subset contains n state columns and is selected in Step 4.

(ol
E...::

33

o
o
I{;- Iv-16

-
3
. w

CandON]
W,
o

=

o1 ®

K

2

rd
.o
..”

-

';‘;v

o
£

(X

A
l.n.l.)J.l

L.

".‘ o -
RA S

SO

B B Tt] -— " A 3 i -
T A Dyt B e St A e S S 0 ar T B St MR e M i i i S AR TRt Rl R A i s S A Al e gt i e Al el g ong |

Node A12

Nodes A121 - A124 correlate to Steps 1 - 4 discussed above.

The

last node, A125 Format, creates a file that 4is suitable for PRESTO.

Format basically substitutes

Reduced Symbolic State Table.

B
.

A

AL R L B T S S i YL N AL ST U S PSR NP "
O SRR Y AN LTS U Y \.f-.’\‘

the optimum

1v-17

AN Y

state assignment into the

This creates the binary PLA Truth Table.

AT P RIS

D |

- W - .~ LRSS - . ~. - LT AP A L A R A DR - ~
~

o

':? Node: A12

KN o Titles Assign States

. N Date: 11 Jul 83

{ Rev,.: 1.0

b 11 PLAFST Control

- e L
‘tﬁ Generate

Basic State

A 12 Reduced Symbolic Columns Basic State
y State Table Columns
.\: \

"

-y

Estimate
Costs Cost Estimates

’

Bin Sort

Sorted Cost
Estimates

J

Ordered
Search Optimum State
Assignment

J

Format

()) L)L)

PLA Truth Table 01

Y Figure 1IV-12. WNode A12

1v-18

) AT AT AT I R A R R A R R I A e e e A e T e e e e e e e e e e e el e e e
A R S S R A S S R G (A L T it Rt A b i

o.‘. “v’

2

.
.
‘o’
o ..:
>,

i e

e e d

&
5!

]

«
w et %

p A&
el

o
AP

‘4 -
-‘._-'“" \.‘.\’L \?

AR,

|

-
L)
‘e

Overview

The analysis of PLAFST is divided into three parts. The first part
looks at the purpose and outputs of the various programs within PLAFST.
It analyzes what each program accomplishes. The second part of the
analysis compares PLAFST against benchmark state transition tables used
by others to compare results. Two individual programs, ASSIGN and SYM,
are investigated in detail. ASSIGN, which computes the optimum state
assignments, is also compared against its own options: Simple Assignment

and Gray Code Assignment.

The third part is the sensitivity analysis. ASSIGN is the only
program analyzed in this manner since it requires at least an order of
magnitude more execution time than the other four programs written for
this thesis. The sensitivity analysis uses state transition tables that
vary only one parameter. The execution time for each state table is

plotted and a Big-Oh analysis is done on the results.

Figure V-1 shows the relationship between the PLAFST shell script

and other resident programs on the VAX 11/780. SYM, ASSIGN, CFORM, and

............

..................

.....................

SR A 89 B e e A AT AT A et i e i b ???FiﬂT

MAKE SFSM were written for PLAFST. SYM and ASSIGN comprise the bulk of
the programs created during this thesis effort. CFORM translates
PRESTO's output to the format required by PLAGEN. MAKE SFSM decodes

SYM's output and the SFSM PLA CIF file to generate the SFSM CLL file.

The SFSM CLL file includes the PLA, buffers, and the state variable

interconnections.

State

SYM |l assioN|] PRESTO| = CFORM

Table

PLAFST

(Shell Script)

CIF Specification

CLL |g MAKE_SFSM PLAGEN

Plot s

Figure V-1. PLAFPST Structure Chart

SYM performs the first data reduction of the symbolic state table.
The symbolic state names are translated to numbers starting with one.
The symbolic input names are ignored. They are required merely for the
programmers convenience. The output symbolic names are converted to
strings of ones and zeros. One string is created for each state in the

symbolic state table. Once the initial data processing is completed,

.....................

) e N e T AN SN O -‘\.‘$."-'_
Wt e e e D A LI L S L P JRPL TS R S CEANCIRCIR U AT A L)
...... PSPPI PRI PRI P PR PRI S LA, ! \._\.':.\' L% L{L'L"Lﬁ\‘i

yht

L
<.
-

4 AN
A
" _‘c*_\';- i

SYM tries to reduce the state table through equivalence partitioning.
The initial symbolic state table and the output from SYM are shown in
Figure V-2. 1In this case no symbolic reduction is possible. The fact
that an error state was not designated in the original symbolic state

table is shown by a zero at the end of the first line of SYMs output.

INITIAL SYMBOLIC OUTPUT FROM SYM
STATE TABLE
8110963 2.5 8119632.50
A
B 12
c 32
D 34
E 34
4 56
G 76
H 78
input 1 18
output 1
ABCBCDEDEFGFGHAH 00
000000000000 00
output 1 0 output 1 0 00
00
00
00
01

-
(-]

Figure V-2. Initial Symbolic State Table and PLAFST Reduced Table
ASSIGN is executed next. It uses the state transition table from
SYM. The output strings are placed in an array until they are appended
to the output. ASSIGN does not use them during the state assignment

process. ASSIGN generates the distinct column set for the number of

states in the state transition table. It then calculates a cost

estimate for each colum set using the transition table and performs an

ordered search to determine am optimum assignment. This process 1is
discussed in detail in Chapter IV, Example. Two other choices for s:ate
assignment exist. The first 1is simple assignment. The states are
assigned successive binary numbers starting with 0. 1In Figure IV-2,
State 1 from SYMs output would be assigned a value of 0000. State 8
would be assigned a value of 0111. The other option is a gray code
assignment. State assignments are made by the Simple Assignment portion
of the code and then translated to a gray code. Once the state
assignment is determined, an output file like that in Figure V-3 1is
generated. Figure V-3 shows the result of the optimum state assignment

process. This data is in the format required by PRESTO.

.14

.0h

.p16

0000 0000
1000 1000
0100 0010
1100 1000
0001 0010
1001 1010
0101 0110
1101 1010
0011 0110
1011 1110
0111 0100
1111 1110
0010 0101
1010 1100
0110 0001
1110 1100
.e

Figure V-3. Output from ASSIGN

V-4

ASSIGN does not consider commonality between PLA product terms,

For this reason, PRESTO is used to reduce the size of the PLA. PRESTO
was able to reduce the product terms from 16 to 11 in this example. The

output from PRESTO is shown in Figure V-4.

.14 i
N1
.pl1
010- 0010
- 1--- 1000
L -=-01 0010
- 1--1 1010
X 0101 0110
b -011 0110
A 1-11 1110
e --11 0100
YO 0010 0101
s 1-1- 1100
DS) 0-10 0001
o -
jlj Figure V-4. Output from PRESTO
N |
o |
d:,\\']
! . The output from PRESTO 1is piped through CFORM to PLAGEN. CFORM
*.‘1
:3: acts as a translator. It changes PRESTOs output to a format acceptable J
\::'-
:Hg to PLAGEN and adds the CIF number and lambda size to the file. PLAGEN
AN
) generates the CIF specification for the PLA that implements the original
O
.'{: symbolic state table. The output including data sent to stderr from
" PLAGEN is sent to a file called foo. The data sent to stderr is the
AN
., bounds of the PLA. It can appear anywhere in the output file and will
:3&j usually cause an error if the file is used directly by CLL. For this
f:ﬁ; reason, MAKE SFSM reads foo and generates a duplicate file with the

I, bounds data deleted. This includes the newline character that follows

’;;- o the bounds data. This 1insures the integrity of the PLA CIF file.

»

WYY YRYYX

ek T et
<
.

TRy

YR

4
L]
P
5 A

S

e

‘Y
‘e

B -

[s
AR

3 d

. ﬂ B
LA RS ¢

« P F '/ 'l R A ' ot
. EON) LA e, t SN Yy
- JANKCARMNR - | ARICARARS et
.‘.,'
I"."

MAKE SFSM uses this information and the state transition table size,

obtained from SYMs output, to generate a CLL file that includes the PLA

CIF file.

Cll is the final program executed. It uses both of the files
generated by MAKE SFSM to generate the final plot of the synchronous
finite-state machine (SFSM) created from the original symbolic state
table in Figure V-1. The SFSM CLL file is shown in Figure V-5. The

plot of the SFSM is shown in Figure V-6.

#include "/usr/lib/local/s_ext.cll"
external pla (cif 963 bounds --15,0 140,111)

SFSM
§

pla(0,0);
fiterate 4, 1 16, 0

PlaClockIn (15, --58);
iterate 2, 1 16, 0

PlaClockOut (92, --53);
wire poly 95, --53 w 2 d 121 22 diff u 7 3
wire poly 103, ~-53 w 2 d 22 1 46 diff u 17
wire poly 111, --53 w 2 d 32 1 70 diff u 27

wo we

Pigure V-5. SFSM CLL File

. .‘.:'\v PR R \.."..\' .\.;\"‘.';‘."‘.'.\'.'-"\'. .'\.' o'

g v #°8¢E1 g°9 a9 spunoq 41)
—— g-8el 29 s spunoq

o)

o]
i - - v 4e

[i S Shayls SUEES aciay 8

il
|
T
1
l
1
L

Bl

L1 (A]]
I
L1 el
]
.
|
L
T
f
1
. : 1
1 :
T T
T
L.
|
|
J
PR T VAP AP R S TR LS |

11al Iz
[

-
E
&
5l
o
4

M

' b iR
|
ju

I
T
Clil

Plot of SFSM Generated from Figure V-1.

i
, e

R R
g]] e (@] m (& @ il ul]
. . I 1T T e 1 200 KRR O = [R S5 ; & 185 -

asf P o BT i] P 5 e 2

S 35 1 1 HEH |
, W IRERCRCRERCEE] i =
3 R 00 | TS S A5+ ,ﬂm T BAE ST 200 IV A T . G 3 5 i R r
.. EnfilslnlnlsnlnRSSERS RSN ;
, SR 20 0 S AR W 0 § PO VY S S0 RS0 O S M 55 05 N WY R I I 1 FrH
. | . & [| ([1 i :
e T — Y3 IS § 0 M 3 SO r T i @ . .
- OO T [il “mrm $
. T I B . S R B T . iSRS >
, — 1 m — = ml 1 @] — = 8 o
”.._ | _ﬂ 2 I OB HE 441 mﬂ r : T 8
o r «. s A = 555 < ous)
j BT] TR e 2
a 11 S0 R I T T % o |

; o B ¢ ﬂ ﬁ.w O
4 HEP) P | SO T T _
g U S o B S e I S unts e ol s [} i il 8
i T (8] 8 (&) B (8] (&) (8] B 1§ H]

L3 Ll ad Wi et i £ b O RN

i

'(‘

At TR Ny T e I R e A T i

-

F)
"U'

s
P

"A." I;'

<L
et

ey
’

+

RS

1.8 4

P - -
..

e

19
i)
i
-

b N
' .A.-'J IA’“. LA

i\

.‘.
~.
.~
~

]

Benchmark

In this section PLAFSTs performance is compared against the
benchmark state tables and assignment schemes created by other authors.
ASSIGNs options are also compared against each other. The execution
times for PLAFST, ASSIGN, and SYM are provided. The table numbers below
refer to Appendix A. The cost is the number of AND-OR gates required to

implement the state transition table with the given state assignment.

PLAFST only generates a mnear optimum solution to the state
assignment‘ problem. This is due to the cost estimation algorithm. The
debug option was used to show the internal calculations. PLAFST matched
the cost estinates of Noe and Rhyne for Table A-15 on 7 of the 15 cost
estimates. One of the estimates that did not match was lower than Noe
and Rhyne. The other estimates indicated two to three additional gates
were rtequired. This difference in cost estimates significantly affects

the the ordered search for the optimum state assignment.

However, PLAFST actually calculated a better optimum state
assignment for Table 14. It also matched the optimum state assignment
for Table 12. PLAFST assignments are usually within a few gates of the

"optimum" solutions for the benchmarks state transition tables.

Y - - cu® y :.__. N L e T N L N N AT

EAE AL AT AR SR e NN
- e R SRS AR R AR SRR URL RN Y

.......

I S .i
Ty =

N
S

; INER
S

B LAY A -
;'..“'n":r.\.‘:l“’\‘. ~

L

Table V-1. Benchmark Comparison

Table Author State Assignment Cost
Number

6 Hartmanis 15, 51, 170 22
PLAFST 30, 51, 180 23

7 Torng 6, 8, 18 39
PLAFST 9, 15, 26 42

8 Dolotta &

McCluskey 2, 7, 9 40

Torng 2, 5, 17 39

PLAFST 5, 17, 29 42

9 Dolotta 3, 6, 19 19
PLAFST 14, 24, 29 25

10 Curtis 15, 19, 21 43
PLAFST 6, 11, 33 63

11 Curtis 67, 101, 106 75
PLAFST 26, 67, 106 114

12 Dolotta 15, 60, 85 20
PLAFST 15, 60, 85 20

13 Dolotta 3, 21, 36 36
PLAFST 21, 26, 54 39

14 Dolotta 27, 46, 105 81
PLAFST 170, 180, 198 73

15 Noe & Rhyne 4, 7, 14 12
PLAFST 2, 14, 24 14

Table V-2 shows the execution times
of the tables in Appendix A.
Simple assignment and Gray Code options
associated programs were executed on the AFIT VAX 11/780 located inm
building 641, WPAFB, OH.

provided by the UNIX operating system command

u'\}\‘\'u}\}x}xixga#u.a ~,

of ASSIGN.

"time".

for PLAFST and ASSIGN for each
Execution times are also given for the

PLAFST and its

The times in Table V-2 are in seconds and weie

The smallest

OCa i A S R AANR RE 4 fan e 24 BACMARAEIL AL LB S L AL SL L AR A4 T AT ATLETE S A M A R A R R A |

BT N T N I R I A R TR TR AL .
&

N

A

)

;”{ o division 1is tenths of a second which makes differences of one-tenth
* insignificant.

. Table V-2. Execution Times (Seconds) for PLAFST and ASSIGN

t;

o

o Table # States PLAFST ASSIGN

! Number /# Inputs Optimum Simple Gray

v A-1 3/1 16.5 0.5 0.2 0.3

o Figure 1I-1 4/3 56.2 1.6 0.5 0.7
N A-2 4/1 17.2 0.5 0.3 0.4
N A-3 5/1 21.8 2.1 0.3 0.6
'I.':\ A-l. 6/1 26.2 2.9 003 0.6
— A-5 7/1 26.9 2.6 0.3 0.6
',; A-6 8/1 28.0 2.3 0.4 0.5
i A-7 5/2 43.0 9.5 0.3 0.7
Y A-8 5/2 42.3 8.9 0.4 0.6
-::‘. A-g 5/1 2‘..0 203 003 0.6
o A-10 6/2 50,3 14.7 0.3 0.5

' ‘:3 A-11 7/3 197.5 73.2 0.7 1.3
- A-12 8/1 25.8 2,1 0.4 0.7
- A-13 6/2 52.4 14.0 0.5 0.7
S A-14 8/2 55.4 7.3 0.5 1.0
Zb A-15 5/1 26.0 2.6 0.4 0.4
Y

,'.g

ﬁ: Several general observations can be made from this table. In all
i* cases, Simple and Gray took less time than Optimum. This is expected
. since Simple and Gray both execute in 0(n) time. The next section shows
-

o that ASSIGN is greater than O(n’). Specific comparisons are difficult to
'53 make since several parameters vary between the state transition tables.
) :

x
! ::

e The two significant parameters for ASSIGN are the number of states
3t .- and the number of inputs. As the number of states increases, so does
& A

-*‘1 Pl

;; the number of distinct state column sets that must be generated. Table
'*:

1:‘4

j-; V-10

2

L I T I A 2 T P I . S S S RET P R .. "e 4+ aTe mmm Attt T e e
ﬁ.\\ " ..-.",- et ey .) .,,",~.-_‘.- A g . L T e

.............

V-3 shows the number of distinct state column sets for up to sixteen
states. The number of distinct state column sets rises exponentially

after eight states.

Table V-3. Number of Distinct State Assignment Columm Sets
(Ref 4:1367)

Number of Distinct State
States Column Sets
2 1
3 3
4 3
5 15
6 25
7 35
.- 8 35
[{: 9 255
o 16 6435
2,
(-~
N @
.: _:
>
- An increase of one in the number of inputs will double the size of
ﬁ? the state transition table. Table V-2 shows that state transition
tables with close to eight states or more than one input, require
significant increases in execution time. State transition tables with
seven states and three inputs like Table A-11 have greatly increased
- execution times.
‘5
. The optimum state assignment costs for ASSIGN are compared with the
simple and gray code assignment options in Table V-4. The table shows
that in all cases the optimum state assignment costs less than the
simple or gray assignments. The simple assignment is cheaper than the
N o gray assignment for some state tables and more costly for others. There
~ N

N v-11

l\

- A
’ ‘\ - .

o
>

&
F s

%

2 2

APy
e
WA

el -.' "',:L‘p'-

.

is not any pattern as to which of these schemes is better for any given

state table.

Table V-4. Optimum, Simple, and Gray State Assignment Comparison
Table ASSIGN SIMPLE GRAY
Number
A-1 9 20 16
Fig. 1I-1 17 38 20
A-2 14 17 16
A-3 17 25 33
A-4 21 39 42
A-5 26 51 47
A-6 23 26 41
A-7 42 62 76
A-8 42 65 62
A-9 25 42 29
A-10 63 107 103
A-11 114 160 168
A-12 20 21 31
A-13 39 102 132
A-14 73 99 97
A-15 14 27 29

Table V-5 points out some interesting facts

about where ASSIGN

spendb most of its time. The execution times and number of iteratioms
can not be directly compared since different state transition tables can
cause great differences in the Quine-HcClusk;y algorithm. Some general

observations and assumptions can still be made though.

The majority of iterations are small numbers. The worst case for

state tables with more than four states is that three sets of two state

assignment columns must be calculated for each iteration. In practice,

vV-12

- *, ‘ e L SN N P Y O S S A TN W PR SR Yo N TSI W S
PO P o O TR T L T P AL O e SR AT T I
Lo PRI AT e e e T e e T e e T e T T T e N N e e
AW W .'-‘.':‘.1 Y AL S TSR VR L WAL U S DAL S AL SRy

- ..

LSRN

U S " -'.‘h‘ -'\
AR L L L W B WL NE S WY

&~
fﬁ' '

o"
e
xj_'
:}:i . the number of calculations is greatly reduced since ASSIGN remembers the
{ cost associated with each state column set and does not recalculate it.
:} Table V-3 shows the number of distinct state assignment column sets that
o
::i must be calculated. For example, Table A-14 has eight states which
~
‘ means that 35 state column sets must be calculated. This translates
: into 70 state tables which must be reduced with the Quine-McCluskey
\'l
N4
:‘.f algorithm.
:f' Table V-5. ASSIGN: Execution Time and Number of Iteratiomns
Table # States ASSIGN
- Number /# Inputs Optimum Iterations
- A-1 3/1 0.5 1
- Figure II-1 4/3 1.6 0

s _ ‘ A-2 4/1 0.5 2
. 5] A-3 5/1 2.1 2
o A-4 6/1 2.9 5
. A-5 7/1 2:6 2
e A-6 8/1 2.3 5
3 A-7 5/2 9.5 2
Y A-8 5/2 8.9 1

A-9 5/1 2.3 9

_.:: A-10 6/2 14.7 29

Al A-11 7/3 73.2 2
,.“- A-12 8/1 2.1 1
7 A-13 6/2 14.0 14

. A-14 8/2 7.3 4
_ A-15 5/1 2.6 10
R
AN .
0
' However, Table A-14 takes only four iterations to arrive at a
solution. The worst case is that 24 state tables would have to be
;:: solved. As discussed, above this number is probably considerably less.
Thus, it 18 reasonable to assume that ASSIGN spends most of its
::j _;é:::_’- execution time calculating cost estimates. This seems to be borme out
VR
L <
N2

v-13

' .
.ot

by state tables with zero or one iterations which still have a
significant amount of execution time. This becomes important for future
efforts to reduce PLAFSTs execution time. Faster methods of estimating
the cost of a state columm set may yield great decreases in the

execution time.

Table V-6. SYM Execution Times

Table # Original # Reduced Time (s)
Number States States

A-1 7 3 0.2
A-2 6 4 0.2
A-3 6 5 0.1

Table V-6 shows the execution times for SYM with those tables that
were reduced symbolically. Times for other state tables range from 0.1

to 0.3 with no state reduction.

Scnsitivity

This analysis tested ASSIGNs sensitivity to the two parameters
discussed earlier, the number of states and the number of inputs. The
number of cost estimations greatly increases with the number of states.
This is shown in Figure V-3. Each additional input will double the size
of the state transition table since PLAFST requires that the SFSM be

completely specified.

V-14
RS P T, J TR
o o ¥ X “a e 4'.-4" s v'..q.

A.l‘

A8
e
SV
i State transition tables were constructed that varied only ome of
I these parameters at a time and tried to maintain the same type of state

" transitions throughout the test data. Figure V-7 shows the first,
"

; middle, and last state transition table used for the state sensitivity i
”» |
g~ analysis. \
J-". i
x"-'t‘ ‘
5.

P

£

':"' First State Table Middle State Table Last State Table

g

AL

) 2110950 2.50 5110950 2.50 9119502.50

ﬁﬁ 22 23 23

:Z 11 34 34
-:'-: a 5 4 5
s 00 355 56

‘:’ 10 11 67

78
e 00 89
X 00 99
b 00 11

St 00

. 10 00

T, 00

L) 00
,jﬁ' 00

i o0

i 00

g 00
;. 00
iyt 10

o‘_' »

J Figure V-7. State Transition Tables Used for State Sensitivity

:

8

-\‘
:1-'_j The progression used to extend the state transition tables can be
. easily seen., Each state transitions to the next state on a zero imput

o IJ\-

:: N and to the next state plus one on a one input. This process continues

LA

L%

o

i v-15

-
*
-.u
.-.»-.
e
3 until the highest state is reached. All states after this point
~ i- transition to the highest state except the last state. The last state
:::: transitions to the first state in all cases. Since ASSIGN does not
:.(consider the outputs, only one output is high in order to keep the
5 solution from being trivial. These state transition tables can
) transition to any state and are strongly connected. The execution times
‘_o for the eight test state transition tables are in Table V-7.
.,j
29
g)
¢
::“_- Table V-7. Execution Times for State Sensitivity Analysis
e
o) Number of States Time (s)
“~
“~
N 2 0.2
::‘., 3 0-‘0
e 4 0.4
Q 5 2.0
e . 6 2.7
; ::- 7 3.0
2 ” 8 2,2
. 9 1000+
LS
Lot
e
oy The results are plotted in Figure V-8. The series of curved plots
-
A
T is grossly approximated by the upper straight line. This gives an upper
! bound to the time vs. state response of ASSIGN. The upper bound can in
L
"' turn be approximated by:
o .
i
ﬁ (log, n)-1
- O(n) «n
o
'.-_j.' .
ﬁ
r:f: o
£
Ko
e v-16

U A i - S o e S i LA AL LB g il i i st S AL AR 2% 2 S A S I .—.-T

100
10

\ Time
— (seconds) 7
l'.\
7S
2
Y

1

0.1

2 4 6 8 10

Number of States

Figure V-8. Execution Times for State Sensitivity Analysis

V-17

LS Tty

wia &GN

-
()
N

-
L

AAEAORAALL - AR

AL A

The data shows that ASSIGN works well for state transition tables

with less than nine states.

When state transition tables with nine or

more states are solved, the execution time grows exponmentially to very

large values. It is interesting to note that when the number of states

is exactly equal to a power of two,

significantly.

The state

start with the five state

sengitivity analysis.

in Figure V-9.

the state transition

521950 2.50

SN
[R I ")
[V IS T B
[V WY NE N

00000
00000
00000
00000
10000

transition tables

the execution time decreases

for the input sensitivity analysis

transition table used for the

state

The next three state transition tables are shown

Each time the number of inputs is increased, the rows in

531950 2.50

PN
P UWLew
LB E I T I
[C NS NV N
PN
[S IS B - V)
B uuu e
[W RV Y]

00000000
00000000
00000000
00000000
10000000

table are repeated.

541950 2.5 0

2345234523452345
3455345534553455
45554555455545355
55535555555555555
1111111111111111
0000000000000000
0000000000000000
0000000000000000
0000000000000000
1000000000000000

Figure V-9, State Transition Tables for Input Sensitivity Analysis

P S .
NP Y

V-18

1000

100

- " Time
(seconds)

- -
M l' lr.l. ,‘
et
P
.

LRI

b ‘,{‘.1‘; .n

e 1 0

‘c' 0 1 2 3 4

Number of Inputs

; - Pigure V-10. Execution Times for Input Sensitivity Analysis

) o v-19

PRFLTAT ALY

h)
?
4.,
A
.
b

] T Table V-8. Execution Times for Input Sensitivity Analysis

Number of Inputs Time (s)

) ,ﬂtibff

2.0
11.4
82.3

589.7

sWN R

The data from the input sensitivity analysis is shown in Table V-8
;\i' and plotted in Figure V-10. The results are a straight line on a
Y

logarithmic plot. They can be closely approximated by :

< o(n) = " log2 n

‘ZD The test data shows that ASSIGN is restricted to state transition
T~ tables with less than nine states and four inputs for reasonable
' execution times. ASSIGN also begins to require very large amounts of
e memory to run. The array sizes had to be increased from those in
Appendix E in order to run the five state transition table with four

o inputs.

L UNE B
kY
‘.l

feas v-20

""" B T o B e L e T o
et N R T N T N NN N L T N

;
::; S ' CONCLUSION
2
i
" Conclusions
<
' ’ PLAFST meets its goals. It converts a symbolic state table into an
integrated circuit. The integrated circuit includes a programmable
é logic array, clocked buffers, and interconnected state variables.
z PLAFST works well for symbolic state tables with less than nine states
~ .
A and four inputs. Symbolic state tables larger than these constraints
;; cause inordinate increases in execution times.
_;
;
@ PLAFST produces a near optimum state assignment that in some cases
ﬁ meets or exceeds published benchmarks. In other cases, its state
o
P assignment cost is relatively close to that of the published benchmarks.
[
: PLAFST is sensitive to both the number of states and number of inputs im
f: the transition table. An exponential growth curve for execution time is
f exhibited for increases in the number of states or the number of inmputs.
..l
.j Overall, PLAFST provides a good computer aided design (CAD) tool
ff for limited scale projects. Within its limitatioms, PLAFST will allow
",
- the synchronous finite-state machine (SFSM) designer to concentrate on
& the details of the SFSM design rather than those of the integrated
]
:: circuit.
L) .
l
o 5
-~ LS
) *
N VI-1
a8
“»
-
O A A D O L e SR Y S S

L L P e e e L L B R TN RN N T S L L A P BV B 0L T D e I e e i P R L

’
g Recommendations
y

2]
X A

;ﬁ There are three recommendations for follow on thesis work on
E PLAFST. PLAFST should be integrated into the AFIT CAD environment.
e: This would include a user manual for each of the programs developed for
;j PLAFST and additional options for partial outputs.

‘EE The state transition tables wused to test PLAFST represented
i benchmarks and state transition tables designed to test sensitivities.
l§ A Monte Carlo method could be wused to develop a uniform set of state
T;ﬁ transition tables to throughly test and analyize PLAFSTs performance.
;: This approach could detect the portions of PLAFST that could most
5; benefit from further attention and increase the capabilities of PLAFST.
;é The analysis should also investigate memory usage versus state table
- if> size and the merits of allowing énly 2" state tables. Figure V-8 shows a
~§§ significant execution time decrease for state tables where the number of
,i: states is a power of two.

:ﬁ The third recommendation is to use the assumption that PLAFST
;% spends the majority of its time calculating cost estimates. If this
2 assumption is true, then a faster cost estimation algorithm would
‘;S greatly increase PLAFSTs capabilities. A code profiler would help to
gs identify the portions of PLAFST most often executed. The cost
ib estimation algorithm should be changed to wuse an intuitive process or
: artificial intelligence techniques rather than the exhaustive
: Quine-McCluskey solution to calculate the cost of a particular stateA
;ﬁ assignment. Another approach would be to use the n-cube algorithm like
'E.; e PRESTO.
t-;:':

~ vVi-2

o
5eY
Lﬁx
MY 7S
ﬁ - BIBLIOGRAPHY
Y
A g Cited References
b, e oesesosscsccosecee
=
1. Muroga, Saburo. Logic Design and Switching Theory. New York: Johnm
;\; Wiley & Sons, Inc., 1979.
R \ ,f‘
F;f 2. Peters, Lawrence J. Software Design: Methods & Techniques. New
s York: Yourdin Press., 1981.
»u‘n’-
3. Hennie, Frederick C. Finite-State Models for Logical Machines. New
3 York: John Wiley & Somns, Inc., 1968.

4, Story, J. R., H. J. Harrison, and E. A. Reinhard. "Optimum State
. Assignment for Synchronous Sequential Circuits," IEEE Tramsactions

- on Computers, Vol. C-21, NO. 12:1365-1373, December 1972.
i", 5. Noe, P.S. and V. T. Rhyne. "Optimum State Assignment for the D
;rJC Flip-Flop," IEEE Transactions on Computers, 306-311, March 1976.

‘-

‘-’:t- 6. Newkirk, J., Mathews, R., Redford, J., and Burns, C. Stanford nMOS
Lo ‘3 Cell Library. Stanford University, 1981.

-_‘_: 7. Mead, C. and L. Conway. Introduction to VLSI Systems. Philippines:
::::‘; Addison-Wesley Publishing Company, Inc., 1980.

AN

ol 8. Noe, Philip S. “"Remarks on the SHR-Optimal State Assignment

o Procedure."” IEEE Transactions on Computers, 873-875, September
. 1973.

.- 9. Noe, P.S. and V. T. Rhyne. "A Modification to the SHR-Optimal State
- Assignment Procedure,"” IEEE Transactions on Computers, 327-329,
{.:: March 1974,

‘ 10. Rhyne, V. T. and P.S. Noe. "On the Number of Distinct State
T Assignments for a Sequential Machine," IEEE Transactions on
: Computers, 73-75, January 1977.

",

x. 11. Aho, A. V., J. E. Hopcroft, and J. D. Ullman. Data Structures And
W Algorithms. Massachusetts: Addison-Wesley Publishing Company, 1983.
:j:::j 12. Chirlian, Paul M., Analysis and Design of Digital Circuits and
"N Computer Systems. Illinois: Matrix Publishers, Inc., 1976.

e

W

1.

._:':. .._:_..

”y o BIB-1

Lo

Fic.

4%

.

T

. e A Ca . e aE L At T L MR AT gt B T T A e T T T A et e et et At A AT T AT et
™ v L '), A\ .r) PP ;\'\q,_,_.r.. S AT AT T \\‘.\ ORI R A A, T I _,..‘.__s

Curtis, Allen H. "Systematic Procedures for Realizing Synchronous
Sequential Machines Using Flip-Flop Memory: Part I," IEEE
Transactions on Computers, Vol. <C-18, NO, 12:1121-1127, December
1969.

Curtis, Allen H. "Systematic Procedures for Realizing Synchronous
Sequential Machines Using Flip-Flop Memory: Part II," IEEE
Transactions on Computers, Vol. C-19, NO. 1:66-73, January 1970.

Kanbayashi, Yahiko. '"Logic Design of Programmable Logic Arrays," IEEE
Transactions on Computers, Vol. C-28, NO. 9:609-616, September 1979.

Parchmann, Rainer. "The Number of State Assignments for Sequential
Machines," IEEE Transactions on Computers, 613-614, June 1972.

Sherwood, Will. "PLATO - PLA Translator / Optimizer," Proceedings of
the Symposium on Design Automation and Microprocessors, 28-35,

February 1977.

Weiner, Peter and Edward J. Smith. "On the Number of Distinct State
Assignments for Synchronous Sequential Machines,” IEEE Transactions
on Electronic Computers, 220-221, April 1967.

Tang, Chao-Chih and Marilyn A. Tarpy. "An Algorithm for Deriving All
Pairs of Compatible States by Closure Cases," IEEE Transactions sn
Computers, 202-207, February 1976.

T e T B T A R AT ATE T TR T
[

Zj-‘;:-

e

Y) A APPENDIX A: TESTING

{ "

o

?}55 Overview

NN ———ceeaa

‘Eiﬁ PLAFST was tested in two phases. The first phase ensured that the
§é§ PLAFST programs were logically correct. The next state tables in Tables
_ A-1 to A-6 (Ref 3:22, 48) were used to test SYM.C which performs the
ﬁ;i symbolic table reduction. Functional testing of ASSIGN.C which makes the
t;i optimum state assignment was done primarily with Table A-15. This table
‘JE? was used by Noe and Ryhne in their published papers on modifications to
éiﬁ the Story, Harrison, and Reinhard procedure. Consequently, they provided
»*S? detailed intermediate results of their procedure for this state table.
‘¢k‘ (f, This information was very helpful in determining ASSIGN.C's accuracy.
o

’IEI The second phase analyzes the performance of PLAFST's optimum state
\}\ assignment algorithm, Analysis of PLAFST includes final state
_22: assignment, cost, and execution time. Tables A-6 through A-14 (Ref
ésg 4:1372) are benchmark next state tables used by Story, Harrisom, and
- Reinhard (SHR) to compare their method with other state assignment
ESE algorithms. PLAFST options for straight binmary and grey code assignments
Eii are also compared against the optimum and benchmark results. A
i{%? sensitivity analysis is done with additional state transition tables
:EE which vary ounly one parameter. The analysis and results are in Chapter
"j : 5.

a0 A N AN IO RNty K

v
L)

ﬂﬁ{{f)
‘-) RO l;n ;b

4!

P
.h..
&

NANDE

[XA

¥

. [
SRRE
LA LA,

,eéd

L

Logical Testing

PLAFST was executed with the debug option to show the input file
conversion into the final SFSM PLA. The symbolic state tables used
during logical testing are relatively short and PLAFST's manipulations
were easily checked by hand. These state tables also checked the
symbolic state reduction capabilities of PLAFST, The benchmark mnext
state tables used in the analysis phase are only intended to compare

optimum state assignments. They can not be symbolically reduced.

Tables A-6 through A-14 are modified from the original SHR analysis
by the addition of outputs, None of the state assignment schemes
consider the outputs, but PLAFST requires outputs to correctly process
the state tables. These state tables are benchmarks used by SHR and
others. PLAFST's results are compared to the results of the other state
assignment schemes for the D flip-flop. The authors and results of each
of these methods are listed in Table A-16. As mentioned above, the
analysis is based on the £final state assignment, cost, and execution
time. The execution times for each state table are only used as a guide
to PLAFST's efficiency, since these times are not available for the other
methods. Cost A, Table 16, is determined when commonality between
product terms is not considered. Cost B considers product term
commonality which in some cases reduces the cost significantly. PLAFST

costs will be compared to Cost A since PLAFST's state assignment cost {is

A-2

"
:% ’ calculated before PRESTO is used to reduce the PLA through product term
o '
ﬁ; N commonality. The entire analysis, including the sensitivity analysis is
[contained in Chapter 5.
=
2 Tables
S Table A-1 Table A-2 Table A-3 Table A-4
- PS| x1 x2 PS| x1 x2 PS| x1 x2 PS| x1 x2
:‘ A | B/O c/0 A | B/O C/0 A | B/0 C/O A {B8/0 c/0
i B| c/0 E/O B | A/0 D/O B | D/O A/O B | /1 E/O
"'} C | A/ F/O Cc E/0 B/1 c c/0 FJ/O C | A/0 B/1
L~ D] G/O F/O D | A/O B/O D | A/0 C/0O D | E/0O F/1
E | F/0 G/0 E | C/0 A/1 E |C/0 F/O E |F/0 F/O
',, F | D/1 c/O F | E/0 D/1 F {A/1 D/O F (¢c/1 E/O
. G | C/0 B/O
-
(4
: @ Table A-5 Table A-6
X PS| x1 x2 PS |x1 x2
‘\ A | B/O C/0 1 |4/0 7/0

B | D/O E/O 2 |3/0 8/0
W C | E/0 A/O 3 |5/0 6/0
D | B/O A/O 4 |16/0 6/0
'*: E | F/0 G/0 5 |8/0 3/0
Wy F | C/0 6/0 6 |7/0 4/0
g G {B/0 F/1 7 11/0 2/1

8 {2/1 2/0
:::: Table A-7 * Table A-8
= PS|x1 x2 x3 xt PS| x1 x2 x3 xé
2 1130 1/0 2/0 4/0 1 {1/0 1/0 2/0 2/0
) 2]1/0 5/0 2/0 4/1 2 |2/0 3/0 1/0 2/1
::3 3]13/0 4/0 5/1 3/0 313/0 5/0 5/1 3/0
4 | 5/0 1/1 2/0 4/0 4 | 4/0 2/1 3/0 3/0
: 5 |5/1 4/0 5/0 3/0 5 |5/1 5/0 4/0 1/0
- .
i '.n_':v
") A-3
e
(
"
RIS AN AT R YOOy NN RSP -.::;:-,-

- Table A-9 Table A-10
SR PS| x1 x2 PS|x1 x2 x3 x4
£ 1 |1/0 2/0 1 [4/0 5/0 5/0 2/0
N 2 |2/0 3/0 2 {1/0 4/0 3/0 5/0
e 3 13/0 4/0 3]6/0 3/0 5/0 2/1
o 4 | 4/0 5/1 4 |3/0 5/0 3/1 1/0
' 5 15/1 1/0 5 12/0 3/1 5/0 5/0
- 6 11/1 6/0 3/0 3/0
&
KA Table A-11 Table A-12
o PS|x1 x2 x3 x4 x5 x6 x7 x8 PS| x1 x2
Y
2&3 1 |1/0 1/0 1/0 1/0 1/0 1/0 1/1 1/0 1]1/0 2/0
3¢ 2 |2/0 2/0 2/0 2/0 2/0 2/1 2/0 2/1 2 |3/0 2/0
N 3 |3/0 7/0 /0 3/0 2/1 5/0 4/0 2/0 3 |3/0 4/0
= 4 |4/0 2/0 6/0 4/1 2/0 2/0 4/0 2/0 4| 5/0 4/0
A 5 |5/0 7/0 2/1 5/0 2/0 5/0 2/0 2/0 5| 5/0 6/0
et 6 |1/0 6/1 1/0 1/0 6/0 4/0 1/0 6/0 6 | 770 6/0
.\§ 7 |1/1 1/0 17/0 1/0 7/0 1/0 5/0 7/0 7|70 8/1
% 8 |1/1 8/0
Ny
g @ Table A-13 Table A-14 Table A-15
NJ,W'
A
-2
ool PS|x1 x2 x3 x4 PS| x1 x2 x3 xé PS | x1 x2
.1
. . 1 |[1/0 4/0 5/0 2/0 1 }1/0 2/0 6/0 1/0 1 |5/0 1/0
15 2 [4/0 1/0 2/0 5/0 2 {2/0 3/0 2/0 4/0 2 | 4/0 2/0
) 3 |1/0 4/0 3/0 2/1 3]5/0 3/0 3/0 3/0 3 {3/0 3/0
i 4 4/0 1/0 2/1 3/0 4 | 2/0 6/0 5/0 3/0 4 |2/0 31
Y 5 |1/0 /1 5/0 2/0 5 |5/0 1/0 8/0 5/1 5 |1/1 5/0
A 6 |6/ 1/0 2/0 5/0 6 [7/0 1/0 6/1 6/0
i 717/0 7/1 17/0 1/0
I 8 |8/1 7/0 8/0 5/0
'.'n
| <. .

.'. - - - &L B g T T T eV wv e et P AT e T ATy T TN et TR e N e e wa¥e " m¥ e
=

.::: Table A-16. State Assignment Method Comparison
I

B Table Author State Assignment Cost
i Number A B
L 6 |Hartmanis 15, 51, 170 22 22
~ 7 Torng 6, 8, 18 39 39
e 8 Dolotta & McCluskey 2, 7, 9 40 40
> 8 | Torng 2, 5, 17 39 39
P ~4 -

N 9 Dolotta 3, 6, 19 19 17
:: 10 Curtis 15, 19, 21 43 43
L

= 11 Curtis . 67, 101, 106 75 75
2,

v 12 Dolotta 15, 60, 85 20 20
A 13 Dolotta 3, 21, 36 36 33
2

AP 14 Dolotta 27, 46, 105 81 68
"

. ® 15 INoe & Rhyne 4, 7, 14 12
N

\‘

~.'$

%)

r

e

" i

.
Py
nY

..

W

A
S

Q* \'(C‘

h3 A-5

3

A A N A S 2 T T T e T

o
e

£,

PN

T

T . User Manual

oy T e

5 PLAFST(1) UNIX Programmer's Manual PLAFST(1)
~N

IO

x‘. I‘

o .
S nANE

plafst - PLA implementation of a synchronous finite-state machine

R (SFSM)
'R SYNOPSIS

_’$ plafst [-s] [-d] [-sa, -gc] < symbolic_state.table

[, DESCRIPTION
e PLAFST is a program that generates a FLA with clocked input and

output buffers from a symbolic state table. The symbolic states

Y are reduced using equivalence partitioning. An optimum binary
i;: state assignment is made. The state variable assignment and cost
A is sent to the standard error file. The cost 1is defined as the
:j number of AND-OR gates within the PLA. The state outputs are
"

properly interconnected. The buffers are PlaClockIn and
PlaClockOut from the Stanford nMOS Cell Library. PLAFST generates

both CLL and CIF descriptions of the SFSM and plots the integrated
-5 circuit.
\

N The options for PLAFST are:
-‘:’ -8 Generate the PLA only. Do not include the buffers or state
'Q variable interconnections.
vy
‘§: -d Debug. Generates detailed information during the SFSM
A generation process.
’
: ‘ -38 Simple Assignment. The states are assigned binary numbers
> in the same order that they appear in the symbolic state
) table file.
o
jQ -gc Gray Code. Same as Simple Assignment except that the
_” binary values are converted to a gray code.
v One state can be designated as the error state. Any undefined
\ﬁi states will transition to this state. However, use of an error
N state will degrade the optimum solution. An error state has an

asterisk (*) as its first character.

To use PLAFST you must create a symbolic state table in the format
- shown below:

o' ..
.o 8 e
et tatatats

#_of states # of inputs # of outputs CIF # lambda ¢

PR

: '

Symbolic_state name #1

e

e

A
.r';. '
h

L}
.
4 . - . N .
YRR -_" L TS AN ™\ A e W ‘Nl" ~ =
7'.. X ‘ * Qt ~’*"$"' N Ll

AR .V' « \‘..1"‘. ~.‘ m -‘.‘n“;-""._‘ ;c-.:.""’- 4"-."‘;(.-

sPac.m s L T . e ad et W\

S Symbolic_state name #n

i -~ Input name #1

{ .
e Input _name #n

- ' Output name #1

Output_name #n

Next State Array

"‘"‘L";:rl

»

Output Array

« .
[¥4 "

o

'; Where # states is the number of symbolic states in the table
SR # ioputs is the number of inputs to the SFSM
AN # outputs is the aumber of SFSM outputs
eovin CIF ' # is the number that the CIF symbol will have
' lambda L # i3 the lambda scale factor for the CIF file
AN
e Symbol names are 25 characters or less, including the alphabet, 0 -
?t A 9, and the underline character, . The characters can be in any
20 order and case is significant. The order of the symbolic names is

- ‘f, critical. PLAFST uses their order in the file to decode the Next
i State and Output arrays.

:E: The Next State Array countains # states times 2 raised to the

:}} #_inputs Symbolic_state names. The array contains # states rows
\ff and 2 raised to the # 1nputs columns. The first row corresponds to

. . the first Symbolic_state name in the file.

. The Output Array has the same number of elements as the Next State
g Array. 1If a state has no outputs for a given input, then a 0 must
< appear in the appropriate place in the file. If several outputs
_4:9 occur during a particular state, their names must be separated by
—— slashes, /, and any number of spaces.

EE An example is shown below:
>
L /* # states #_inputs #outputs CIF # lambda ¢ */

T 4 375950 2.5

- /* Designated error state and first symbolic state */
o s

750N HY

N FG /* Symbolic_state names */
i r

‘ ! ’-‘l c.r

YN e long_timeout /* Input names */
iy
o, B -2
—

e short timeout
s . -
o S
> N s
; ho
XN hi /* Output_names */
xS £0
o £1
" HG HG HG HG HG HG HY HY
HY FG HY FG HY FG HY FG
o FY FY FY FY FG FG FY FY /* Next State Array */
.\ FY HG FY HG FY HG FY HG
‘o £0 £0 £0 £0 £0 £0 0 £0/s-
{- h1/£0 h1/£0 /s h1/£0 hi/£0/s h1/£0
: h1/£0/s h1/£0 h1/£0/s hO/s h0/s hO/s /* Output Array */
o h0/s hO hO hO/s hO/s h1/£0 h1/£0/s
0 h1/£0 h1/£0/s h1/£0 h1/£0/s h1/£0 h1/£0/s
A
:52 NOTE: The comments shown in this example can not be included in the

- input file!

~ SEE ALSO
) presto, plagen, cll
25
o2 BUGS
’ > The current state assignment algorithm produces a near optimal
‘:’ solution only. The solution is still less costly than either
simple or gray code assignment schemes.

atate A
R

Nt

r]

JhARy

4

AR
L I S 3

[N

3

Y Do 2k BRSNS A ACH LI A R AR IR SRR A RO S A e M A A AR R A A A 0l L)

»
.

/
»

{2A

'
PLAFST
“?'; Z2ATS1
] e s
; # PLAFST s a shell script which Intlates the various
15 # programs that operate on the symbollc state table glven
-l # In the input flle.
15 set noglob
;i.‘ 1t ($Fargv > 5)then
3% ocho Too many arguments In t+he command |ine
oxi+(1)
(z“ endlf
< foreach | ($argv)
;Z 14¢ "$® == "=g®) then
e set debug = ~d
o> else 1t ("$I" == w—g®) then
set stop = -3
o oise If ("§|" == ®-35a") then
}.:- set simple = -sa
g._: else If ("$I® == W—ge®) then
P set grey = -gc
ol ondl ¢
. eond
x5 1t ¢ $2simple &8 $2grey) then
A echo Two assignment methods were chosen !
"2 / exi+(1)
i ondlt
., it ($2simple) then
" @ set code = -sa
e olse It ($2grey) then
: set code = --gc
- ondl
£
e 1t ($2debug) then
_) sym =d sym.out
ey 1t ¢ $2code) then
v ::j assign ~d $code assign.out < sym.out
oy olse assign -d assign.out < sym.out
:’:: ondif

eise sym sym.out

» 1t ($2code) then

" assign $code assign.out < sym.out
: olse assign assign.out < sym.out

7 ondlf .

~ ondi ¢

presto < assign.out | cform sym.outl plagen >3 foo

;-.f sske_sfsm foo sym.out > stfsm.cil

o ra foo

§ It ¢ $2st0p) then

s ox14(0)

e N endl ¢

'R ;:‘-,. cll ~Is =g3.5 stsmecl| sfsm pla.clt
“‘. - ocho cll =Is ~C sfsmecll sfsm placclt
S

T‘”‘;A;l

- c-1
i

P

S
N te

.-""n...~":. 5}- WA o _'...'-~.'...- (RN ,\...:.\1 ..;.\- ..:.‘..'~.\.«\.;\.~~_.:,'-;.‘.' . T .: -;- e '-‘_'.;_‘.' - -._.-.. _.“.'-

o)

NN

‘l

AR

R

‘s

G 5 % A

XN WL S

[AAS

s ARy,

)

=l

COLAL 2 2 e e

sm.c

/% SYM.C - Fixed arrays */

/% SYMREDUC - symbollic state table reductlon checks the Input file for
errors and reduce; tle symbollc state table. This program
functions as a preprocessor to ASSIGN states. SYMREDUC
uses 170 redirection for Input and output */

#include <stdio.h>

#define TRUE 1

#define FALSE O

fdefine MAXSYMBOLS 100 /* Maximum number of symbol names for states,

Inputs, or outputs */
#define MAXCOMBIN 500 /* Maximum for numinp * noutputs */
#define MAXLEN 25 + 1 /% Maximum length for symbol names plus 1 for
string termination */
#define EOR ~2 /* End of Record */
#detine EOP -1 /* End of Partition #/
#define NUMCOL 80 /% Number of columns on standard CRT ¥/

/% Used for visual output only - does not atfect flles */

/% GLOBAL VARIABLES */

static Int debug = FALSE, errorstate = NULL;

static Int nstates, ninputs, noutputs, symbol, numinp = 1;
FILE *fout, *fopen(); '
float |ambds;

/* MAIN PROGRAM */

main (argc, argv)

Int arge;

char *argvl];

§

Int flag;

cher statesIMAXSYMBOLSIIMAXLEN], TnputsIMAXSYMBOLSIIMAXLEN],
outputsIMAXSYMBOLS 1{MAXLEN], otable [MAXSYMBOLSIIMAXCOMBIN] ;

Int stableIMAXSYMBOLS 1IMAXCOMBIN] ;

register Int J, k;

1t (argc == 3)
§
debug = TRUE;
1f € Cargv(1100] 1= *=*) || (argvi1)(1] t= 'd?)) error (1);
fout = fopen (argvi2], "w®);
§
olse If (argc == 2)
fout = fopen (argvl(1],"w");
eolse error(1);
1t (fout == NULL) error(9);

If (debug)

. (] ey ., @ Q'.~.~--v'- .‘-‘
SN SN OO R N A AR A

fprintt{stderr,” Hello! You are now In the PLAFST DEBUG ZONE!\n");

flag = scanf("%d £d %d %£d $f",instates, &nlinputs, Snoutputs, &symbol, &lambda);
14((flag == 0)11(flag == EOF)) error(2);

for (J =0; J < ninputs; J++)
numinp = numinp * 2 ; /% Numinp equals 2 ralised to the ninputs #*/
1f (debug) /* Print symbollc state table values from above */
§
fprintf(stderr,*The symbolic state table values were read in ");
fprintf(stderr,"correctly. Thelr values are : \n");
fprintf(stderr,"nstates £d, nlnputs £d\n",nstates, ninputs);
fprintf(stderr,"noutputs %d, CIF symbol! £d\n",noutputs, symbol);
fprintf(stderr,"iambda $1.1f numinp %d\n\n",{ambda, numinp);
§;

/* Load the cheracter arrays from the Input flle. */

1t (debug)
fprintf(stderr,"The symbollic names are now belng loaded. n n"});
load (states, nstates);
load (Inputs, ninputs); /* Inputs are never used = Included In the Input
file for clarity only */
load (outputs, noutputs);

It (debug)

§

for (J = 0; J < nstates; J++)
fprintt(stderr,"MAIN: £s \n", states(]]);

for (J =0 ; J < ninputs; J++)
fprintf(stderr,"MAIN: %s\n",Inputslj1);

for (J = 0; J < noutputs;] ++)
fprintf(stderr,"MAIN: £s\n",outputsl));

§

If ¢ debug)
fprintt(stderr,”The error state number 1s: $d.\n",errorstate);

/% Load the state 4ruth tsble Integer representations for the state names.
the flrst symbolic state In the Input file becomes state #1 */
loadstable(stable, states);

/® Load the output truth tsble with the characters '1' and '0' sultable
for PRESTO */

loadotabie(otable, outputs);
1t (debug)
tprintt(stderr,"MAIN: We are about to enter Reduce\n");

I i L VI S ST I et R P R T P
o ';‘QA'ML'..\‘(-_‘. L'\.‘.(:._‘.':.,'.') ﬂ:. A I.} -".\ JJ‘ J{.'.l).h‘,':l Qmﬂt‘k\\:*‘:J

e {3

-.:“

waaT

.
*

oy SR
)
.

N

kY
AN

il et 4
e

r,

s
o
s

._,'/

>
[

. ¢ ¢ 4 2
e T I It

iy
R

} o ‘.'.‘: 50y

R

'y f

. '.. .u. il

s "o
Pl
N .

4% 9
X000 -

X

0

»

FSRrER
PR

P A

el

LD -
[3 l'j’l'

Y

£

o3
A

‘I$.l

[

.

i'. o'_ >

~

[}
¢: L

-,

Oy
XXX

AN
.. ..\

TN NN

reduce(stable, otable); /* Reduce the glven symbollic state table */

format(stable,otable); /* Format the state table Information for ASSIGN */
fclose(fout);

/% LOAD ~ loads character strings of maximum length MAXLEN */

load(p, num)

char pIMAXSYMBOLS1IMAXLEN];
{nt num;

§

Int J, k, strien();

1¥ (debug)
fprintf(stderr,"LOAD: the number of varlables to load Is $d\n",num);
for (J = 0; J < num; J++)
§
scanf("$s",pl j]);
1f (plJIIO] == t81)
§
for (k = 0; k < MAXLEN - 1 ; k++)
plJIk] = p[Jllk + 1];
errorstate = | + 1;

§
it (strien(pl]J]) > MAXLEN - 1)

plJIIMAXLEN] = 0; /* Terminate the string 1f too long */
1f (debug)

tprintf(stderr,"LOAD: $s\n®,plJ1);
§

/% LOADSTABLE ~ loads STABLE with a copy of the Input state array.
Symbollc states names are replaced with Integers to denote states. */

loadstable(stable, states)

int stable[MAXSYMBOLS 1IMAXCOMBIN]; .
char statesIMAXSYMBOLSIIMAXLEN];

§

int J, k, |, flag, match, *p, MAX = MAXLFN;

char stringfMALEN], c;

1f (debug)
§
fprintt(stderr,"Numerical Next State Table.\n\n");:
fprintt(stderr,"LOADSTABLE: Input Term # Term State #A\n");
§

for (J=0; J < nstates; J*)

......

y % % . X . o, AR e

-
Y

Al

-

LA A A AN

Pt -+ = e

‘_{ll I o

. &
¢ .

o

»
'
b

ll
O Y S]

g ’ Z

RN . 4 ORd
) .

.
LA
o '

i P .

454

(5

YAk ! |

%5
AR
,

§
p = stablel }];
14 (debug)

fprintt(stderr,"LOADSTABLE: $£d\n",numinp);
for (k = 0; k < numlnp ; k++)
§
f1ag = scant("f1s",string); /* Get the flrst character */
| =0;
while (((c = getchar()) 1= ")&&(c I= "' n'})
1 ¢ | < MAXLEN)
/% Tests iIf verlable Is longer than */

stringl ++|] = ¢; /% MAXLEN characters. Ignores */
/% addltlonal characters */
stringl ++| 1 = 0; /* Terminate the string */
1t (debug) .

fprIntf(stderr,"LOADSTABLE: £d. %s ®, k, string);
match = FALSE;
for (1 = 0; | < nstates ; i++) /* Search for a match with the
symbollc state names */
§
1t (debug)
fprintf(stderr,® %s %£d ",states[!], |);
1t (stremp(string, statesil|)) == 0)
§
1f (match) error(8); /* Two Indentlical symbollc names */
1f (debug)
fprintf(stderr,” %d \n®, (| + 1));
e = | + 13
match = TRUE;
break;
§
§
1f (match == FALSE) error(6); /* No match with symbolic state names */
i1t ((flag == 0)|11(flag == EOF)) error(5);
11 (debug)
fprintf(stderr,®\n");
§

/% LOADOTABLE -~ Loads OTABLE with character strings suitable for PRESTO
Example: f0 Is the fourth of five output verlables In the Input flle.
it Is the only output variable |lsted for a particular
state/Input combination (NODES) In the output array.
LOADOTABLE generates the character string "00010".
*/

loadotable(otable, outputs)

cher otableIMAXSYMBOLS JIMAXCOMBIN], outputsIMAXSYMBOLS]IIMAXLEN];
§

Int J, k, |, ent;

cher c, stringiMAXLEN], *p;

- . - . -‘ s . - - - - .
.'.c-'. -'. ',a '_',\"..'...‘...,. Pt -.' ‘s
X y 0" 7, DRI

.

HD-A138 466
FORCE INST OF TECH MWRIGHT-PATTERSON AFB OH SCHOOL OF

ENGINEERING D C PELAN DEC 82 RFIT/GE/EE/83D-57
F/G 9/2 NL

UNCLASSIFIED

PLAFST PROGRAMMABLE LOGIC ARRAY FROM STAT TRBLE(U)VRIRr 2/2

T £, LR L ROETS, Cal W SO0 S LB L A A LWL LA W iy 8 LA RIS LENA NASYA A S i d R 2 R |

-.".."l'f
« nhv‘! "‘ A
Pt |

o= L B8 §2s
] = w L2 22 ¢
ol = . - j22
- & L-o 2.0 '
A » u . |

. TR

_—
(e

N
O
o

fles

-
AL MICROCOPY RESOLUTION TEST CHART
p NATIONAL BUREAU Of STANDARDS-1963-A

&

at f‘f—s

|%

G
> n‘.'.

PPl d
NN
Tl

KA R

G

5
X

CORRIRE
PLPLIR PR

Y

A

;(..l‘..

DOy

A
A

3

»
J‘.‘:‘

&

X~

/n

S"

Vit
'3 NN PN

s s
K

A
»

1t (debug)
. fprintt(stderr,"Output table character strings \n\n");
tor (J = 0;] < nstates; J++)
. §

for (k = 0; k < numinp * noutputs ; ki+)
otablel J1lk] = *0¢;

for (k = 0; k < numinp * noutputs ; k += noutputs)
§
for (| = 0; | < noutputs; I++) /* Max number of outputs for a given
state/Input comblnation */

§
ent = 03
scanf("$tis®, &c);
It (debug)
fprintt(stderr,"LDOTABLE: %c\n",c);
/* Get the tirst non-white character */
It (c == /1) /* Get next character */
§
scenf("%1s", &c);
§
else 1f (| 1= 0)
$

ungetc(c, stdin);
breek; /* Got all of the outputs for this NODE #/
§

6 stringl0) = c;

while { ¢ = getc(stdin))

§

1t (¢ == * ') break;
else 1f (c == /') § ungetcl(c,stdin); break; §
else If (¢ == '\n') break;
else 1f (c == EOF) break;

11 (debug)

fprintf(stderr,” LDOT: ¢ $c",¢);

1t (cnt < MAXLEN - 1) stringl++cent] = ¢c;
§
stringl++cnt) = 0; /* Terminate the siring »/
1f (debug)}
fprintt(stderr,"LOADOTABLE: string £s J%d k%d ",string,J,k);
‘ /* Print the string. */
for (ent = 0; cnt < noutputs; cnt++)
11 (strcmp(string,outputsicnt]) == 0) otablelJIlk + cntl = '17;

§
1¢ (debug)
fprintt(stderr,”\n");
§
otablel JIlk + noutputs = 1] = 0; /* Terminate the string for this NODE #*/
11 (debug)
.:,,:' tfprintt(stderr,"LOADOTABLE: £s\n",otablel]));
I.*' ‘

rw v AR RA AR LA BILARARA NS WA 4 e DA TN
i 2 Rt iad Sk RO vt L A die- M asd o ek AR S S (ad Wl Sl S S] Pa o A 4 AR AR AL RN
et . - - . - - . - - -

I
rat
"i.r’
.
.;'-% /% REDUCE - reduces the symbolic state table »
ot ,
W reduce(stable, otable)
. Int steblelMAXSYMBOLS 1 IMAXCOMBIN];
Yy char otesb|elMAXSYMBOLS) IMAXCOMBIN];
> §
f:) int J, k, |, ent, cntl, count, partitionIMAXSYMBOLS * 4],
- pl1, *pl2, *pl3, change = TRUE, pass = 0O, done, test = FALSE;
Int statelMAXSYMBOLS], ptablelMAXSYMBOLS1IMAXCOMBIN] ;
/% Partition requires at most nstates * 2. Nstates * 4 Is used
Yo allow for reparitioning during the symbollc state reduction. */
o A Partition based on outputs /
1t (debug)

tprintt(stderr,"REDUCE: \n");
v, p11 = partition;
% ent = 0;
.,; for (J = 0; J < nstates ; j++)
7 §

pass = FALSE;

for (pi2 = partition; pi2 < pli; pl2e+)
o~ §
.;' 1% (debug)
}: fprintf{stderr,"REDUCE: pl2 %d, *pl2 £d\n",pl2-partition,*pi2);
- it ¢ *p12 ==] + 1) pass = TRUE;

§
_ @ 1t (pass) continue;
ﬁ /* Skip states already In Partition.

\.

N Jd + 1 1s used becuase the Stable and Otable reference

: is alvays one less than the state number the
reference polints to. Applys to k + | below aiso. */
for (k = J ; k < nstates ; k++)
- 1t (strewp (otsblel jI, otablefk]) == 0)
;‘i §
-~ il =k + 1;
1t (debug)
§
fprintt(stderr,"REUDCE: p11 $d, *pi1 $d",pl1-partition-1,%(pl1-1));
fpr!nff(sfdorr.", J %d, k ’d\ﬂ'n Ja k);
§
3 §
- *pl1++ = EOP; /* Set End of Partition %/
1¢ (debug)
tprintt{stderr,"REDUCE: pl1 £d, *pt1 Sd\n",pli-partition-1,%*(p11-1));
$'.j cntes;
b §
:-' *pl1 = EOR;
Y 1t (debug)
§
N . tprintt(stderr,"REDUCE: inltfal number of partitions Is: £d ", cnt);
. e prat(partition);
\‘) ’
‘

- o AL T 4 e .-‘_._;_,
f.& \'x's ':b..\'\. \1\‘3. 5.'3‘_3. A dafe iat _.J

LA L tadC IS At LAl i at e i S et e Dt Tyt gl g e AR e T A A A GRS ARG DA

: 1t ¢ cnt == nstates)

V.
':J v §
e tprintf(stderr,®No State Reduction possible. \n¥);
’ return;
- $
oh
a2 /* Sysbolic Stste reduction o/

while (change)

Nk §
\' change = FALSE;
W It ¢ debug)
.:-‘: fprintf(stderr,"REDUCE: Symbollc state reduction pass # £d.\n", pass++);
S cntl = 0; /* Partition Counter */
for (ptt = partition; *plt §= EOR; pii++)
A, sultch(¥*pi1)
:, § /% Each state Is listed In Partition only once. Generate
AN State table of each symbollc state's partition. #/
5N case NULL: breek;
. case EOP: cnti++; break;
default: statel®pll - 1] = cntl;
e §
f‘ pI3 = pit; /* Set 13 equal to EOR *
§ 14 ¢ debug)
8y §
. fprintf(stderr,Symbolic State Parition n");
@ for (J = 0;] < nstates; J++)
;w fprintt(stderr,"State: $d Partition $d\n®, J+1, statel]]);
N prat(partition);
:}'j tprintt(stderr,”\nState Transitions \n");
o §
< for (J = 0; J < nstates ; J++) /* Convert state numbers to partition */
§
-"-, 1t (debug)
’ fprintf(stderr,"$d. ®,] + 1);
'0' -
‘N for (k = 0; k < numinp; k++) /* numbers »/
§
N ptablel J1tk) = state [stablefJIIk] - 1)3
xR 11 ¢ debug)
132 fprintt(stderr,” $d*, ptebieljllk1);
4..\‘ §
‘-: 1¢ (debug)
= fprintt(stderr,"\n");
: §
b
5 it ¢ debug-)
i j fprintt(stderr,"REDUCE: partition based on transitifons. \n™);
Y pi1 = partition; /* Reset pi1 to the beginning of Partition */
4 while ("pi1 1= EOR) /* Repartition states based on transitions #*/
o . $ /* Dbetween the last set of partitions \74
- L done = FALSE;
N v for (pi2 = pI1 + 1; *pl2 1= EOP; pi2++)
A 5 -
-
5 D-7
'N'_'L
A S L N SR AN WS AR < RO O R S SRR

1t (debug)
$
fprintf(stderr,"The states under conslderation are®);
fprinttistderr,® £d and %d\n", *pil, *pl2);
for (J = 0; J < numlnp; J++)
fprinttistderr,” $d",ptablel*pll - 11[J1);
fprintt(stderr,”\n");
for (J = 0;] < numinp; J++)
fprinttistderr,® Sd", ptablel*pl2 - 111J]);

tprintt(stderr,*\n");
1f ¢ l{done))
prat(pertition);
§
for (J = 0;] < numinp; J++)
1£C ptablel*pl1 - 1111 I= ptablei*pl2 - 13(J))
§ /* State transitlons not equal %/
chenge = TRUE; /% So move to new partition */
done = TRUE;
*pi3++ = ¥pl2; /% Move state to end of list #/
pi2 = NULL; / Erase state from present partition #/
breek; /% Jump out ot comparison for loop */
§
§
1f (done)
§
*pl3 = EOP;
4p13 = EOR; / Set new EOR #/
§
1t ¢ debug)
prat(partition);
pll = +4+pl2; /% Set pll1 equal to start of next partition */

pil = pi2 = partition; /* Remove NULLs from Partition Iist 74
while (*pl2++ i= EOR)
It ¢ *pi2 1= NULL)

*4pll = #pi2;
1t (debug)
§
fprintt(stderr,"Remove the NULL states.....\n");
prat(partition);
‘ L 3
§
/% Final partitioning Is In Partitionl) 74
/* Teke one stete from each partition */
cntt = 03
1¢ (debug)
fprintt(stderr,"The final partitions are |isted below:\n");
pll = state;

*pl1 = partitionlOl;

............
.......

L AR A SA - o~ 2 B SN ot i it et in S i et St it L A R Attt L R L

0 for (pi2 = partition; *pl2 1= EOR; pi2++)
hohs §
) 14 (debug & (*pi2 > 0))
fprintf(stderr,"sd. $d n", cntl, *pl2);
1t (#pl2 == errorstate) *pll1 = #pi2;
1t (*pl2 == EOP)
§
cntiee;
Seepll = ®(pi2 + 1 }3 /% Moke state a |ist of the reduced
states without EOR and EOP */
§
§
/% Update STABLE */
*++plt = EOR;
1 ¢ debug)
prat(state);

pl1 = state;
for (p12 = partition; #*pi2 I= EOR; pl2++)
$ /* Change states In STABLE to reduced tsble set */
1t C (*p12 > 0)88(*pi2 I= %*pi1))
for (J = 0;] < nstates; J++)
for (k = 0; k < nuninp; k++)
1f (stablel J1Ik] == #p12)
stablef J1lk] = *pl1;
. 1t (¥pi2 == %pl1) test = TRUE; /* Test 11 STATE (*pi1) equaled */
rs) It (#pl2 = EOP) /* value within the partition %/
1f (test)
§
pli++;
test = FALSE;
§
eolse orror(10);
§

I1f (debug)

§

fprintt(stderr,”\nThe original number of states was £d. ", nstates);

1t (nstates == cntl)
tprintt(stderr,” No reduction possible\n");

eolse
p .
fprintf(stderr,"The reduced nurber of states Is $d.\n", cnt1);
fprintf(stderr,"The states In the reduced set are |Isted below:\n");
tfor (] = 0; J < cntl; Jee)
tprintt(stderr,"$d \n", statel]]);

§
§
1f (nstates == cntl) return; /* Do NOT rearrange global varlables
before returning »/
O for (J = 0; J < cntl; o) /* Sort Partition from low to high order */

for (k=]+ 1; k < cntl; k++) /* |nsure next state rows are not changed
before required In the next FOR loop */

ot des ¢ T R lb Do ha i i< e e fiar Se ol At i A e - AR i S SR A o AR e

"2
...

AR

.
. e

. +
) ‘.' b .“‘J‘J“J] - '

O

LN

.....

It (statelJ) > state Ik])
§
| = statelJ];
statel J] = statelk]);
statelk] = |;
§
1t (debug)
§
fprintf(stderr,"REDUCE: Change stable and oteble to reflect the new");
fprintt(stderr,” partitions. \n");
§

/% SHAP %/

for (J = 0; J < cntl; Je+) /% Change next state & output tables to */
§ /% reflect reduced number of states */
for (k = 0; k < numlinp; k++)
stablel jIlk] = stablel statel]J] - 1 3}lk};
for (k = 0; k < (numinp * noutputs + 1); k++)
otablel jI{k] = otablel statelj] - 1 }lk];
§
nstates = cntl; /% Change global variable to reflect new number of states ®*/
/* Mgke sure states are numerically sequential. For example:
1234 Insteadof 1 2 5 6. Nonsequential stase numbers are
highly ITkely when any reductlon Is done. */
for (J = 0;] < nstates; J++)
1f (statelj) I= J + 1)
for (k = 0; k < nstates; k ++)
for ({ =0; | < auminp; l++)
1t (stablelk]{l] == statel))
stablelklfl]l = J + 1;

/® PRNT() - print o single dimension array untll value EOR or -2 is roachod. */

pratip)

Int *p;

$

Int "p1;

pl = p;
tfprintf(stderr,"Partitions: \n");

for (pl = p; #pt i= EOR; pl1++)
tprintt(stderr,” £d°, *p1);
fprintt(stderr,"\n");

/% FORMAT - prints an text flle of global varlables Nstates, Ninputs,
Noutputs, Symbol, Lambda, and the two arrays: Stable and Otable
./

formet(stable,otadle)

-------- :. - _'} ‘.;._.;. R .

-
-

LR Y
<

;-" Y

R R N T
'~'$"\'.\

" e

)

-
S~
A

Int steblelMAXSYMBOLS)IMAXCOMBIN];
char oteb |e{MAXSYHBOLS 1 {MAXCOMBIN];

§
int §, k, 13
it ¢ debug)

tprinttistderr,"Heilo from FORMAT n*);
fprintf(fout,"Sd 5d £d $d $1.1f",nstates,ninputs,noutputs,symbol, lambde);
fprintf(fout,” $d\n\n",errorstate);
for (J = 0; J < nstates; J++)
§
for (k = 0; k < numinp; k++)
tprintf(fout,"%d ',s'tablo[,]llkl),
fprintf(fout,”\n");
$
fprintf{fout,”\n\n");
It ((numinp * noutputs) > NUMCOL)
§
fprintt(stderr,"Warning - the output array will print funny since *);
fprintf(stderr,"numinp * noutputs 1s longer than $d.®, NUMCOL);
§
for (] = 0; J < nstates; J++)
fprintt(fout, "%s\n",otablel J1);
§

/* ERROR - Prints error messages to stderr »/

errorin)

Int n;

§

char *p1 = "ERROR - Usage: symreduc [-d] outflie.ext < Inflle *,

#p2 = "ERROR - |llegal symbollc state teble parameter In first Ilne of flie.",
#p3 = "ERROR ~ One of the symbollc state table parameters Is zero.",

%p4 = "ERROR ~ Varlsble name In the state or output arrays dlid not match®,
*pdpl = " any of the glven symbollc names.",

#p5 = ®ERROR - Incorrect number of state or output table varlsbles. %,
#p6 = "ERRCR - Invalld string In the state table. ",

#p7 = "ERROR -~ Partition |1st error.",

#p8 = "ERROR ~ At least two symbollc state names are ldenticalll %,

#p9 = "ERROR - Can't open the output file: .,

*p10 = "ERROR - State transitions changed to state NOT In Partitlon®;

switch(n)

§

case 1: fprintt(stderr,"Ss\n\n", p1); bresk;

case 2: fprintt(stderr,*Ss\n\n", p2); breek;

case 3t fprintt(stderr,"Ss\n\n", p3); break;

case 4: fprintt(stderr,"Ssfs\n\n", p4, p4pl); break;
case 51 fprintf(stderr,”$s\n\n", p5); breek;

case 6: fprintt(stderr,"Ss\n\n", p6); break;

case 7: fprintti(stderr,”Ss\n\n", p7); break;

case 8: fprintt(stderr,”Ss\n\n", p8); break;

-l Rl - e o i St o e g DA A S MO IR A R e e N N e '-."'3.""".'7-';-'.5'.'7."—'.'7">:.;\:T
;

N L]

28

b >,

XA

N x !

LA

.

case 9: fprintf(stderr,®Ss\n\n", p9); break;
case 10: fprintf(stderr, "$s\n\n", p10); break;
SN - default: fprintf(stderr,"ERRONEOUS call to ERRORIN1\n\n");
- §;
exit{1);
§

PLAAAA -

LAY

Y

L XX RN

7 RN

¢«
oy
[

»
o
.

N R S A SR S A V) R R S R T R L R AN

hY

.-,'.:,'/,‘.'_ ’

r. .
.

¥y
LA

P

Vv
-
Yy

P

N XA
.. l\ .ﬁ F]

Fas

X2 1

LY

s, 2 %+ Yk N A e b e A T B AR S A i S A Yl e i Sal MR, £ S AN M AN AR At At e L APCh Sah i IR |

)

N PR ~

ASSIGN.C

£ EHHHHHHHHHHHHHHHHHHHHHHHEHEHEHHHHHHHEHHHHHHHHHHHEHHHHHHHEHHHH /

/% ASSIGN.C -~ Flxed arrays */

/* ASSIGN - Makes an optimum state assignment for the state table
Tn the Input tlle. The output ftle Is sultable for PRESTO.
Options Include simple assignment and grey code schemes.
Debug Is aiso an option. =/

#1nclude <stdio.h>

#define TRUE 1

#define FALSE O

#detine MAXCOL 100 /* Maximum number of distinct state assignment columns */
#define MOXNUMBER 50 /* MaxImum number of states, Inputs, or outputs #/

#detine MAXCOMBIN 500 /* Maximum for numinp * noutputs ®/

#define MAXLEN 25 + 1 /* Maximum length for symbol names plus 1 for
string termination */

#detine EOR -2 /* End of Record */

#detine EOP -1 /% End of Partition #/

#define NUMCOL 80 /% Number of columns on standard CRT #/

/% Used for visual output only - does not affect tlles */

/A HHHHHHHHHHHHHHHHHHHHHHHEHHHEHEEHHHEHEHHHEHEHEAHHHHHHSHHHHHHHE
Al GLOBAL VARIABLES */

static Int mass debug = FALSE, debug = FALSE,
simple = FALSE, grey = FALSE;
static Int nstates, ninputs, noutputs, symbol, errorstate, numinp ;
stetic Int dsanum, maxstate, num2n, num2n 1, numZR_1, numZR;
FILE *fout, *fopen();
float lambda;

/AP HHHHHMMHHMHHHHHHHEHHHHHHEHHHHEHHHEHEHHHHHHHHHEHHHHHHHHHHHHSHHHEHHHH N
/% MAIN PROGRAM */

main (argc, argv)

1at arge;

cher *argvil;

§

Int flag;

cher otable [MAXNUMBER JIMAXCOMBIN], svart MAXCOL 11 MAXNUMBER) ;
Int strens[MAXNUMBER) {MAXCOMBIN];

register Int J, k;

fout = fopen (argvierge-1l, "w*);
1t (fout == NULL) error(2);
It (arge > Sderror (1);

- - -te "

o PR RPCR SATsSA
o ‘-‘;‘L;‘ AW 4 ;'\1' FARAT I

o TR IS A N I o .h',. .;.},\;, > -.' '._-}--_.,\.\ w-_.:_.:-...\,;- et ae e

for ¢ J = 1; J < (arge-1); J+t)

o 1t ¢ argvl JI10] == '~)
I switch(ergvl JIL1))
$
case 'd': debug = TRUE;
break;

case 's': If (argvi]J1(2) == *a') simple = TRUE;
else error(1);
break;
case 'g': 1f (argvlJ){2) == '¢c') grey = TRUE;
else error(l);
break;
case 'm': mass debug = TRUE;
breek;
default: error(l);
§

1 (debug)
fprintf(stderr,” Hellol You are nov In the PLAFST DEBUG ZONE!\n");

flag = scanf("Sd $d £d £d ${",8nstates, &ninputs, &noutputs, &symbol, &lambda);
1t (tlag > 0) flag = scant("$d", lerrorstate);
14(Cflag == NULL)I1(tlag == EOF)) error(3);

auminp = power(ninputs); /% Numinp equals 2 ralsed to the nstates */
@ It (debug) /% Print symbollc state table values from asbove */
§

fprintt(stderr,"The symbollic state table vaiues were read in *);
tprintt(stderr,“correctiy. Thelr values sre : \n"};
fprintt(stderr,"nstates £d, nlinputs %d n",nstates, ninputs);
fprintt(stderr,"noutputs £d, CIF symbol %£d n",noutputs, symbol);
fprintf(stderr,”lambda £1.1f numinp %£d\n",lembda, numinp);
fprintt(stderr,"errorstate %d\n\n®, errorstete);

§

/* Load the character arrays from the input flle. */

it ¢ debug)
fprintf(stderr,"The state table values are now being loaded.\n\n");
loadint (strans, nstates, numinp);
losdchar (otable, nstates);
11 (debug)
formet(strans,otsbie);

setnum(); /* Set the values of global verisbles dsanum, maxstate, num2n

and num2n 1 */
1t (errorstete 1= NULL *
§
oxpand(strens. tedvle)
o . ® k. @ undefined stetes transition to the errorstate */
e setnum(); /* R -et the values of global verisbles dsanum,
maxstate, num2n, and num2n 1 */

E-2

PR

)

b I IR

AN AN

‘e e
“®
.

vy

P05 1A

TN o

P
0 s,
PARREAN

]
Ca
s

-

N R A

OEA R

L s
L g,

b
ey S

- | G
A .« _a 4 LA

)
S tete.

by

&
-
]

Lt

A
<o

§
. It (simple) code simple(strans, sver);
BN else If (grey) code grey(strans, sver);
h olse optimum(strans, svar);
worge (strans, otable, svar);
fclose(fout);
§
/mmmmﬂﬂmm/
/% EXPAND - makes all undefined states transition to the errorstate
and designates the output as all zeroces */
expand(sirans, otable)
Int strans{MAXNUMBER }{MAXCOMBINI;
char otablelMAXNUMBER 1 IMAXCOMBIN];
§
int J, k;
for (J = nstates; J < num2n; J++)
§
for (k = 0; k < numinp; k++)
strans{ J1{k] = errorstate;
_ for (k = 0; k < (numinp * noutputs); k++)
@ otablel Jilk] = '0°;
otablel j1lk] = O; /% Terminate the string #/
§
nstates = num2n; /% All states ere now defined — therefore the number
of states Is equal to the maxImum number. */
§
/mmmmmmm/
/% OPTIMUM - assigns an optimum state varlable code to the state table. */
optimum(strans , svar)
Int stransIMAONUMBER 1 IMAXCOMBIN];
char svar {MAXCOL] IMAXNUMBER } ;
§
char c, yvarIMAXCOL JIMAXNUMBER}, YVARIMAXCOL JIMAXNUMBER];
tnt J, k, |, n;
Int costIMAXCOL), est, EST;
If ¢ (hum2n_t + 1) == nstates) VAd » »/
/* Nstates equais 2 + 1 - so |Ist y varlables %/
ol for ¢ J=0;] < numR 1; J++)
0 decbin(yvarl}l, (J + 1), nstates);
E~-3

R P T T S AL SN SR
DS PREI0 la e S S L SO LR ‘-'.\-':'-\ \"~'.

A AR AT A P i AR el MR AT Pl A e A L I Rt S i e A AP

-~

.

- %

e - PO RTINS .'.7‘._.."..\ ~
- . AR L] P A) o
Ay N e A At AT A A N N L }\.

e i U "Ols YA b AN LA L R A A I A A A A A N R AT AR AN A N T S e St S
2 -
- ‘
R
ot else /7% Nstates is even so generste the y varisbles ¢/

[_ §
. e for (J = 0; J < nstates; J++)
chi " yvarl0llJ] = *-3;
- yvar{0l(k] = 0; /% Initlalize the tirst string 4
: n = nstates - num2n 1;
_ . J=0;
:_' while (n < nstates / 2)
§

J = genO(yvar, n, 0, 0);

R yvarl{ J1{0) = *-*; /% Change the first character In the "seed"

N for GEN1 */
kS

J = genl(yvar, n, J, 0);
n+;
o §

}3 If (nstates $ 2) /% Nstates Is odd so call both genO and genl */
it §

::3 J = genOC yvar, n, J, 0);

W yver(J1[Q] = '-9;

‘ J = genli(yvar, n ,J, 0);

5 §

:_:: else | = genO(yvar, n, J, 0);

S e
(!

.".‘- for (k = 0; k < dsanum; k++) /% F111 the *-'s with a *0* or '1*' */

- §

If C yvarlkl{0] == 10*) ¢ = *17;
else c = '0';

&

Pid
-

o for (| = 0; | < nstates; |++)

_-3. 1t ¢ yverlkl{i] == '-*) yvariklli] = ¢ ;

< §

"‘4 [

. If ¢ debug)

~ fprintt(stderr,"Distinct State Assignment Columns\n\n");
. for (k = 0; k < dssnum; k++)

~ §

N for (| = 0; | < nstates; 1++)

1t (yvarlk)il] == 1) YVAR(KIL|) = %Q";

) else YVAR(KI[I]) = *1¢;

< YVARLKILI) = 0; /* Terminate the string. YVAR 1s the complement
) of yvar - required by D filp flop Implementation */
"]
1t ¢ debug)

\ tprintt(stderr,"Ss $s\n\n", yvarikl, YVARL k 1);
A § '

-~

n

e 1t (J 1= dsanum)

$

‘

W fprintt{stderr,”) $d, dsanum $d\n",], dsanum);

I error(7);

o §

) 1t (debug)

= ;

Y

A

E-4
..
P e A A S AT S S S e e e e

“

4

~ . o A A N a a a abi a al o AL SN S R O S = Lt N R
s i R AEARA LA A Y bt ARG Wb bt W S SO IO EICEAISC CINUCR R A ARG TR TR ST s 1

T,
i N
PRI A
0
P
(o 4

fprintf(stderr,"State Transition Table\n™);
form(strens);
§

ok \1.

for (J = 0; J < dsanum; J++)

»

- §

e

< est = cost est(strans, yvar(]]);

v EST = cost_est(strans, YVAR[J]);

-.:: It (est < EST) costl]) = est;

. else costl]J] = EST;

i 1% (debug)

e §
fprintt(stderr,"OPT: J %d,est £d, EST %4 ", J, est, EST);
xL fprintt{stderr,"cost §d yvar $s, ",cost(Jl,yvar(jl);
e fprinttistderr,"YVAR $s\n",YVARL] 1);

: s
; §

(sort (cost, yvar, YVAR);

-

f:; i1t ¢ debug)
o for (J=0; J < dsanum; J++)

fprintt({stderr,®cost $d, yvar $s, YVAR $s\n",costl]),yverlJ1,YVARLJ]);
) opt_assign (strans, cost, yvar, YVAR, svar);
,'{:
25 g
':’
-1
A a /MWWWW/
.
2 /% COST EST - coples the state transition table Into a truth table using
:'_ the glven yvar of YVAR string. Spilts the table into halves
~ based on whether the yver siring is a *0' or *1'. It
divides the undefined states so that there are an equal

b number of '0' and *1°' rows.
i~ This Is done decrease the cost obtalned when
1:.: the table Is evaluated by QMcClus. COST_EST Is used only
:.: to obtain the minisum cost estimates. */

~

; cost_est(strans, yver)
1nt strans{MAXNUMBER } [MAXCOMBINJ;
- char %*yvear;
$
‘-::: char STMAXNUMBER]{MAXCOMBINI, ¢, yvarp{MAXCOL};
,-\. '” J. k. 'p m, h.lf' .’f'"f“
strepy(yvarp, yvar);
'I:
' fruth_table(s, strans, yvarp); /® Make truth table tor yverp */
v, 14(debug)
Y §
.~ R fprintt(stderr,"COST_EST: TRUTH TABLE for $s\n", yvarp);
N O formc(s, nstates);
% .
'.J
‘-‘
L

s .'.::f /% Sepsrate '0' and *1* rows */

/* Test yvarp starting at yvarplhalt) for values equal to yvarpl0J.
Stop when yvarplhalf]} is equal to the first yvarp value - This
row must be moved to the other ('0' or '1') halt of the table #/

halt = num2n 1 ;
while((yvarplhait] I= *yvarp) 88 (haltf < nstates)) half++;
for¢ J=1; J < num2n_1 ; J++)
1¢¢ *(yvarp + J} 1= ®yvarp)
§
It (mass debug)
fprintf(stderr,*half before $d\n",half);

1f ¢ half < nstates)
/7% SWAP */
for(k = 0; k <= numinp; k++)
§
c = sl Jllk];
s{JIk] = sthalflik]);
slhaltllk] = ¢;

c = yvarpl half J;
yvarpl half) = yvarpl J 1;
yvarpl J 1 =¢;
® ;
eolise /* MOVE %/
§
for (k = 0; k < numinp; k++)
sihaltllk] = st jlik];
yverpthaltl = yvarplJ);
1t ¢ mass _debug)
]
tprintt(stderr,®yvarp.halt %c , ®, yvarpthaitl);
tprinttl stderr,® yvarp.] Sc\n®, yvarpl}D);
§
yvarpl J) = '®0;
halt++ ;
§

I
L

1t (half < nstates)
while((yvarpihalt] 1= ®*yvarp) &2 (half < nstates))} half++;
eolse
yvarplhalf++] = 189,
1t (mass_debug)
fprintt(stderr,"half atter Sd\n",haif);

UNAAR]
LA

while (half < num2n)
1f (yvarplhalf++] < %0?)
yvarpl half - 1) = '#;
yvarpl halt} = 0;
1t (debug)

. oAl sk et B L LI PR USSP G G TS D A A N S A A L e e e W T N e IR I A A {

DR I B PR A A aC R T S A a0t Rt it i oSS oSN ar L AP o I v)
LR SN L I A “ e - % T

\ tprintt(stderr,"Rearranged column variable: $s\n®, yvarp);
R for(J=0; J < num2n; J+) /* FII1 In undefined states */
b3 - 14 € ¢ yvarp(J1 1= *0') 82 (yvarplJ) 1= *1%))
‘ §
o for (k = 0; k < numlnp; k++)
xj s JItk) = *1¢;
o st Jitk) = 0; /% Terminate the string */
X ’
. 1 f{debug)
._'h:' ’
,';- tprintt(stderr,"COST_EST: Rearranged truth table for cost evalutation\n");
-?\ formc(s, num2n);
o §
- estimate = TRUE ;
'.: return QMcClus(s, num2n, yvarp, estimate);
.: §
» '_\
o
?::- /* TRUTH TABLE - generstes a character array truth table from the

state fransistions (strans) and the column variable

.. @ (cvar).

p «/
.(:' - truth_teble(sctrans, strans, cver)
char sctrans{MAXNUMBER1IMAXCOMBIN), *cvar;
,';. Int strans(MAXNUMBER] [MAXCOMBIN];
A": s
Int J, k;

K
t:’ for{ J = 0; J < nstates; J++) /* Make first cut at Truth Table */
E) e ’
'_9: for (k = 0; k < numlinp; ki+)

. sctransi JI{k) = #(cvar + stranslJilk} - 1);

sctrans{ J1{k] = O;

. §
::-. §

i

-y

kS

-‘N
h0 ¢
-_: /mmmmmm/
':.::: /* FORMC - prints an erray of num strings to stderr */
o .
o formc(orray, num)
4. char arrayIMAXCOL JIMAXCOMBIN];

.- Int num;

- o §
.}:2 Int Js

-“

! E-7

)I

’..

) .
', .

N

L0 T
&

-l '--n-.-.--".'.'n‘_\'..'.‘.'
v Sy _s.:.x." -u'-.‘_'.‘,\‘ LR IAN -.'

T ry LW VW W I VT W Ty T g
- 3 et i A DR Ak A e R i T DA SASKASIA A SELM AT A ik R St ATRER/ T MEMERSEREAS AL SRR R A _'.1

[+ ;
. ./:': }
::::;‘
0 .
.4) for (J=0; J < num; J++) ‘
:-j;: o tprintt(stderr,"Ss\n", arrayl))); : :
- ‘
{:f:
05
&Y
o J RSN HHHHHHEHHHE
ke
:‘: /7% QMcClus - Quine McClusky state evalustion ®/
~.
; 3 McClus(s, numrow, svar, estimate)
char sIMAXNUMBER 1IMAXCOMBIN], *svar;
o Int numrow, estimate;
\3 §
{:., int J, k, |, m, hold, lastpl, lastl, stackl, lastad], numbits;
}:} char prime_imp{MAXCOMB IN]IMAXNUMBER],
::-d Tmpl (MAXCOMBIN]IMAXNUMBER];
- Int numones[MAXCOMBIN], dlffer, pass, change = TRUE, nl, nt, sit, cost;
‘A
::: hold = 0; /% Used to count the number of Implicants In the
‘:'_1 zero half of the table. »/
N lastpl = 0;
"- numbits = maxstate + ninputs;
Q@ o
-, -
2 for () =] = 0;] < numrow; J+) /* Gt Inltisl Tmplicents */
= ;
N tor (k = 0; k < numinp; k++)
~ 1t ¢ SLJIK) == *1¢)
] s
numonest m++) = | ;
If ¢ J < num2n 1) hold++; /* The Implicant Is In the zero hait */
dechin(prime Impl lastpi++ 1, | + k, numbits);
1t ¢ (®(svar + J) == %10)||(®*(svar + J) == Q'))
‘ prime_fmp [lastpl ~ 11lnumbits + 1) = 1;
= elise /% Mark the required lmpllicants */
. prime_Imp [lastpi = 11lnumbits + 1] = 0;
oy §
‘-:i) = k3 *
hY! s
N
o lastad] = lastpl;
e 1t (estimate)
o §
-). /® Check for 2k rows. Gets the the implicents with
a 0 most signiticant bit first. Oniy gets one
s adjJanceny per lmplicant from the Implicants
:j.: e, with @ 1 ms blt. This setisfles the criterla
. < that groupings in the transition teble have the
15 . same number of Implicants from each halt of the
-.:r
N E-8
A :.'

. ‘.‘-".q‘_‘i'\n o ¥ \.f\I-\"\'-\

e Ve

:-.-
»

Y
"
o)
3

<

e

Ky N

‘.‘ —l'
a

table.
Hold equals the number of 0 halt prime
{splicants.
W4
lastt = 0;
for { J=0; J <hold; J++)
§
1f ¢ svarl numones{]]) == %1) /% Skip don't care rows */
contlinue ;
m=0;
tor { k = maxstate - 1 ; k > 0; k—)
it (prime_lmplJI[k] 1= prime_Impl jlImaxstate - 1])
[H /* Checks for number of changes between
1 and 0 */
1t ((prime_Impl JlImaxstate -~ 1) == '0*)&&(m == 0) ||
(prime_lupf Jlimaxstate - 1) = *1")&m <= 1))
§
1 f(debug)
tprintt(stderr,"QM: O half $s m %d\n", prime ImplJ), m);
strepy(lepil lasti++), prime fmpl J 1);
§

/% Look for 2k rows in the 1 half of the table */
1t ¢ mass debug)
for (| = hold ; | < lastad] ; i++)
]
fprintt(stderr,"OM prime laplicants: &s *, prime fmpl 1 1) ;
fprintf(stderr,” row £d, yvar fc\n", numonesli), svar{numoneslil));
§
for (| = 0; | < lastt 3 4+)
for (pass = 0; pass < 2 ; pass+) /% Look for prime lmplicants
first, then any adjacenles */

§
1f (pass == 1)
J=hold ;
for (; J < lastpl ; J++)
§
switch (pass)
§
case 0: 1f (sverl numones(j)}) a= t#v)
continue;
’ /* Skip the don't cares on the first pass ¥/
case 13 1f (sverl numonesl J 1) I= t#r)
continue ;
/* Skip prime Implicants on the second
pass 74
$
a=0;

for (k = numbits - 1 ; k > 03 k=)
It (kK > moxstate - 1)
§
It Cprime_Impl J 3 &k J 1= fmpil |} k 3)
break;

: -

o SN S AL A O A
- FONR L R R} .. A » L - L)
RARCHCHRUC LS, SR . T e |

” B e A A A A A) L AT SRR R Y

.
.
- ®
.
) §
-

{.5 else
< S it (prime_fmplJIIKk) 1= prime_ImplJi{maxstate - 11)
- m; /* Checks for number of changes
X between 1 and 0 */
- it ¢ k > maxstate - 1)
::-: continue; /% Implicants were In different Truth
. : Table columns */
b 11 (mass_debug)
fprintt(stderr,"AdJ. consider $s n*, prime Impl J 1) ;
1§ (prime_imp(jlimaxstate = 1] == *0")82(m == 0) ||
: (prime_impl JlImexstate = 11 == *19)88(m <= 1))
3 §
N strcpy(prime_Impl lastad] 1, prime Impl J 1);
3 prime Imp [lastadj++)L O) = *-*;
. /% Mark Adlanceny */
It ¢ debug)
T §
s fprintf(stderr,"! half $s®, prime lmpl J 1) ;
PR tprintf(stderr,” m 5d", m) ;
g fprintf(stderr,®, O half £s\n", Impil | });
§
o break; /% Only look for one match */
e §
- $
. 1t (J < lastpl) /% Above for loop found a match and we
' e only need to look for one match so.. #*/
- §
B+
-7 bresk ;
2 §
-]
o s §
K, - /* Sort prime_lmp Into Imp! by the number of 1s In each term »/
E..: for { J=0;] < lastad); J++)
N §
‘\' grey_code(prime Impl J 1); /* Convert +o Gray code */
. for (| =k =0 ; k < numbits; k++)
: 1t € (prime_lep(JIlk]) = *1*) 1] (prime_ImplJIlk] == =)) |++;
K numonest jl = |;
N §
L for (1 =hold= J=0; J<numblts + 1; Jo+)
".\ ’
e for (k = 0; k < lastad]; k++)
:.-‘ It (numonesl k | == hold } /% Move to Impl */
a, §
:*-? strepy(Impil |), prime lmpl k 1);
o tmp1l | 10 numbits + 1 1 = 0; /* Set check flag */
I+
i §
- -, holde+;
I tCit1=0)
. §
v
. E-10

y Ce et e g PR :: ;,- e - "'{";-\;5';-.{-' 5 :..{..‘;‘. > . \.. AL ‘-}-&‘--‘1‘-". ..;.‘;. _'q' Ve ;. SIAT e e e '_-i
LY L} - L3 - . K N . N

.
Y

R RS

a4

e Y
.X‘.I(a

oo
.—Lf

o ale
v %
ot

o a4 n

s

Al
A

v ——
740

»

. ".]'\“""
" % R
l"l"l.l."l

0
&

s 'l‘
o

LALLM S PR SRR At et bt R U N I e e e S A S S R e S P P T

lepil 1| 110} = O; /* Mark divisions between terms with
- different number of ones */
iy 1++;
§
§
lastl = | - 1; /* Set polinter for Impl */
pass = 1;
hoid = O;
1f (debug)

for (] =0; J < lastl; J++)
fprintf(stderr,"QMcClus: $s\n", fmpil J 1);

vhile (change) /* Quine—McClusky algorit+hm */
§
change = FALSE;
stack! = MAXCOMBIN;
for (] = hold ;] < lastl = 1; J++)

§
switch (tmpil j 1001)
§
case '=': [f (pass == {)
§
11(mass_debug)
fprintt{stderr,"Est AdJacency: Ss\n",impi{]]);
- Impil J Il numbits + 1) = 1; /* Set check flag */
@ 11 ¢ stkchk(stackl, Impt, J))
strepy(Imptl{——stacki], Impil J 1);
continue;
§
break;
case 03 Impil-——stackl (0] = O; /* Set division marker */
contlinue;
§
k =0;
=] 1
while ((k < 2)&&(| < lastl))
§ /* Only check for adjancencles In thls
division and the next */
switch(lmplil | JI O 1)
§
case 0t k++ 3 /* Check for division marker */
I++ ;
continue ;
case '-': 1f (pass == 1) /% Check for estimated adjacency */
§
{1+ ;
. continue ;
$
§
N ditfer = numblts ;

for (m=0; m < numbits; mt+)

E- 1
.
At O O T TR TS T ARV R
PO AN Y h VA AL AR T MV AT N Y

TN A
PIYOI SRS MY Ay

N KR

e’ o,
s 8 & » A

- ,
. a
.
e

F I

)

S

[l b

e

i

[l ¥ R A

AT~

-‘.,l i ‘:

.
'A{l "q' .

Al @,

A
MR B

P

If ¢ lmptlJ)im) == Twpililim]) ditfer—;
olse
hoild = m;
1t (difter == 1)
/% Implicents differed at only one postion
so they are adjacent. Stkchk checks

the stack for duplicate entries #/

§
14(mass_debug)

tprintt(stderr,"AdjJacency: 5s %s\n",Impi1[J),Imp1LI));
it (stackt <]) error (10); /% Stack overflow */
tmptt J J{ numbits + 1 1 = |; /* Set check flag %/
impil |) numbits + 1) = 1; /% Set check flag *#/
change = TRUE; /% Let the outer whlle loop

know that we found an adjacency. */

strepy(Impll—stack! 1, Imp1l]));
tmpil stack! Il hold] = *-'; /* Mark the adJacency */
1f (1 stkchk(stackl + 1, Impl, stackl))

stacki++ ; /* Check It already on the stack */

i++; /* Polnt to the next implicant */

]
/* Compact Impl */
1 =0;
for (J=0; J< lastl; J++)
It C (ImptlJ)inumbits + 1] == 0)88 (Impi[J}I0) I=0))
§
1£(mass_debug)
fprintf(stderr,"M compact: $s \n", Impil]]);
strepy(Impll 11, lmpil J 1);
fopil (++ Il numbits + 1] = 0Q; /* Zero the check flag */

5
hold = |; /% Save the start of adjacent lmplilcants
from the last search */

for (J = MAXCOMBIN ~ t;] >= stackl; J—)

§

strepy (Tmpit 1 1, Impil J 1)3

fepil I++) numbits + 1) = 0; /* Make sure that the flag */

§ /% s reset. */
lastt = | ; .

It (mass debug)
for (J=0; J < lastl; J#+)
forintt(stderr,"McClus: lmpl %s n*, ImpllJ]);
1t ¢ debug)
tfprintf(stderr,"QMcClus pass # $d\n", pass);
pass++ ;
§

/% Done with the Quine—McClusky - so find minimum cover #/

ni =nt =sit=0f /% Number of Literals, Number of terms, and

€-12

¥ 1 AN g N TSI XIS TR e e TP T S e e g

- "

Pd

B

RN

.,.J.
';“L,- ',
L S A

-
Y

I o) .::l -‘- "5
. ."\(\7"‘. .

N

Pl A

\[‘b'c‘"
A A 0% 4

0

- 8
4 ‘..'.5 l.. -

s
N

&

[4

L A Y

>
] [
.'f » 1" fsl'.

DAL LA Chall LT UEGE D LN § SRERELEMESE 0l S 00 EADL AL AR QAL Ak Wi DAt S R A A IO

- Slngle Il1teral terms */

stack! = MAXCOMBIN;

) for (J =0; J < lastpi; J++)
= It Cprime fmp [J 1 numbits + 11 == 1)
§
| =0;
for { k = stackt ; k < MAXCOMBIN ; k++)
§
1t (mess debug)
tprintf(stderr,"STACK CHECKIt $s \n®,Impllk]);
for (1 = 0; | < numblits; |++)
14 (UmptIk1L1] 3= =238 (Impilk)l |) 1= prime_lmpl J ILI1))
break;
1t (| == pumblts) /% Matchl %/
§
if (debug }
fprintt(stderr,” Min. Cover: s $sw",prime ImplJ),Imp1lk]));
break;
§
§
It (| == pumblts)
continue; /* Found a match so skip the next search #/

for (k = |last! - 1; k >= 0 ; k—)
§ /% Search the least restrictive Implicants first #/

1t (mass debug)]
fprintf(stderr,”"CHECKI! £s \n®,Impilk]);
1t ¢ Imp1(Kk1{O0) == 0) continue;

for (| = 0; | < numbits; I++)
11 (CImp1lkILIT §= *~*)38(ImptikI(|) I= prime_Impl J 111D))
break;
1f (| == qumblts) /% Matchl %/
§
strepy (Tmpt{ ——stack! 1, Impif k 1);
1¢ ¢ debug)
fprintf(stderr,” Min. Cover: %s $s\n",prime_imp(jl, imp1tk});
break;
§
§
§
/* Determine the cost of state assignment */
J=0;
while (stackl < MAXCOMBIN)
§
1f (debug)

fprintt(stderr,® Stack: £s\n®, Impl1l stackl 1);
strepy(tmpit J++ 3, 1mpil stackie+ 1);
$

,o- lastl = | ;
.I- 'l
«?!
E-13
- TR N R S G S LI
R N AN A A D B A N S e B A e R

Ty A."I_ A A .. [B '4--"".:" P ‘.~ AdEE _.-'..—..]

il -
T T T T L Arci i e Jie e A A IO

“n
iﬁ
E
2: for (J = 0; J < lastl; }++)
Y §
-:; ;.:-:., for (1 =k = 0; k < numblts; k++)
3 I C tmpil J JIK) B= 3=~%) o4
nher;
NG 1¢C 1 == 1) sites;
- nl += |;
.
S § :
:}; 1t C debug) :
il fprintf(stderr,"McClus: nl %d, nt £d, sit $d\n",nl,nt,sit);
1t nt==1)
11 (sit==0)
cost = ni; ‘
olse
cost = 0;
else
cost = nl + nt - sit;
return cost;
§

/mmmmummmm/
’/* STKCHK - Checks the glven stack for duplicate entries */
stkchk (stack, Iist, p)

@ Int stack, p;
char 11stl MAXCOMBIN 1f MAXNUMBER 1;

H
int J; “

for {] = stack; J < MAXCOMBIN; J++)
It C stremp(listl J), listt p J) == Q)
return FALSE;
return TRUE;

§

/mmmmmmm/

/* GORAY_CODE - Generates a gray code form the binary number pointed
to by PS. The binary number Is an one d!mensional
array of the charcters 1 and 0. The string Is
nul terminated. This algorithm was taken from
Digital Logic by Chirllan

*/
gray_code (ps)
I char *ps;
§

E-14

“ et
PRI
UPR

-1' 0y '1' 7 "!‘ :v‘ -1..-'. RO
LA VA N S A A DA

454

AT

Lt ~ <A
v.-"\"‘v:

I

T Y

ks :'5.,_1

5y

4

A

RAAALAT

)

AT,

- e t -
Y

LN e)
LA

.
LS

.\' y

A ‘ ".Af-*:':'.l\J"J‘ ‘

SR

R
’ Y "

v &
,
"
.

‘&
M.

a o

ol oo G e e Pela 0

A S AR T A A LA S Shafo M Al SaiCT AT R A

e 2N o R g g e g e JarCll CRLCR/CRUEI LA S A IAC A

char ¢, ’p'. cstore;

Int save ;
save = 0 ;
c = '0'; /% Seed for the exclusive or loop #/
p = ps; /* Don't change the orglinal polnter */
If (%p == =0) /% Save the adjacency mark »/
§
save = 1| ;
.P - l"i H
§
whlle((p ~ ps) < mexstate)
§
/* Exclusive or loop */
cstore = #p; /% Save the current siring value */
1 (((c== 10")RR(#p == 110))||((c == *§?)R&(#p == 30O)))
%p = 00, /* Exclusive or is true #*/
else
#p = 10", /% Exor Is false %/
c = cstore ; /* Use the present value of *p to exclusive or
with the next value */
pt*;
]
1t (save)
%ps = = ;

/mmmmﬂmm/
/® SORT - sorts the arrays Cost, yvar, and YYAR using Cost as a key. *#*/

sort (cost, yvar, YVAR)

int costIMAXCOL]);

char yvar{MAXCOL J{MAXNUMBER], YVARIMAXCOL JIMAXNUMBERI;
$

Int J, k, |3

char hold{MAXNUMBER];

for { J = 0; J < dsanum; J++)
for (k=]+ 1; k < dsanum; k+)
1t Ccostl k) < costl J 1)
§ /% SWAP - Everytime something Is swapped, one of the
things s swapped to 1ts correct location. ®/
11(mass_debug)
tprintf(stderr,"SORT: cost %d, yvar $s\n",costlk),yvarik]);

| = costl J)3
costl J 1 = costl k 1;
costl k) = |;

E~-15

P

Pt te m et e et I TR e T} e et N et L s -
-'l‘.‘-‘~. -.'-‘.- vt .‘(~'\..- e }_ ..“ e .. .o, -_ ATt e

PR

T

* 7 ."l
AN

o,

PP)
» s r e
JLTYOUNY -

G

strepy(hold, yvarl J 1);
strepy(yvarl J 1, yvarl k 1);
strepy(yvarl k 1, hold);

strepy(hold, YYARL] 1);
strepy(YVARL J J, YVARL k 1);
strepy(YVARI k 1, hold);

§

[HHEHHHHEHHHHHHHEHHHHEHHHHHHHHHHHEHHHEHNHHEHHHHHHHHHHEHHHHHHHHH

/% OPT_ASSIGN - pertorms the optimum state assignment. It uses the cost
estimates Just completed as a gulde as to when the Is
achleved. */

opt_assign(strans, cost, yvar, YVAR, sver)

char yvar{MAXCOL JIMAXNUMBER], YVARIMAXCOL JIMAXNUMBER],
svar {MAXCOL 1 IMAXNUMBER] ;

Int cost(MAXCOL]), strans{MAXNUMBER]IMAXCOMBIN];

§

int J, k, |, m, stnumIMAXCOL]), done, san, an, mns;

Int actcostl MAXCOL 1, savenuml MAXCOL), peass;

done = FALSE;
pass = 0 ;

for (J = 0;) < maxstate; J++)
stnuml J] = §; /* Inltialize the state column checker */

for (J =0; J < dsanum; }++)
actcostl j 1 = -1; /* Initiallze the actual cost array */

while (1 valld(stnum, yver))
nextasn(stnum, maxstate - 1, dsanum);
for (mns = an = | = 0;] < maxstate; J++)
§
on += best cost(strans, yver, YVAR, svar, stnuml J), actcost);
mns += costl stnuml]j));
1¢ (debug)
fprintt{stderr,"OPT: mns $d, an $d, svar %s\n",mns,an,yvaristnuml J11);
§
1¢ (debug)
for(J = 0;] < moxstate; J++)
tfprintt(stderr,"OPT: Ss\n®, svarl stnuml J) 1);

san = an;
for (J = 0;] < maxstate ; J++) /* Save the previous L74
savenuml J] = stnuml J] ; /% y verisble set */

1t (san > mns)
while (done == FALSE)
§
pass++ ;

I A P S A N R R AR AR R RO I SC I PR CR PSR R A R 4 B p AL e SR A S e |

it (debug)
fprintt(stderr,"san £d, an %d, mns $d\n", san , an ,mns);
1f (! nextasn(stnum, maxstate - 1, dsanum)) bresak;
while (tvalid(stnum, yvar))
It (| nextasn(stnum, maxstate - 1, dsanum)) break ;
for (mns = J = 0;] < maxstate; J++)
§
mns += costl stnuml]) J);
14 (debug)
fprintf(stderr,"OPT: £s %d\n",svaristnumi j11,stnuml j});
§
1t ¢ san <= mns)
§
done = TRUE;
1f (debug)
tprintf(stderr,”OPT: DONE!!!! san £d mns £d\n",san,mns);
contlinue;
§
tor { an = | = 0; J < maxstete; j++)
§
an += best cost(strans,yvar,YVAR,svar,stnuml] 1,actcost);
1t (debug)
fprintf(stderr,"OPT: %s\na", svaristnumlJ11);
§
1¢ (debug)
fprintf(stderr,"OPT: mns $d, an $d, san 5d\n", mns, an, san);
It (san > an)

§
san = an;
for { J = 0; J < maxstate ; J++) /* Save the previous */
savenuml J 1 = stnuml] 1 ; /% y veriable set */

§

11 (debug)
fprintf(stderr,"san $d, an £d, mns $d\n", san , an ,mns);

It (san == mns)
§
done = TRUE;
14 (debug)

fprintt(stderr,"DONEI! san £d \n®, san);

§

1t (debug)
fprintf(stderr,”san £d, an £d, mns £d\n", san , an ,mns);

§ .

/* Finlished - tound the optimum binary asslignment! */
for (J = 0;] < maxstate; J++)
§
stnuml J] = savenuml J] ; d

strepy(svarl § 1, sverl stnuml J) 1);

/* An Interesting note: Because of the cost sort the
tina) combination of y variables will always be in
ascending order In the svar array. */

fprintt(stderr,"OPT: y verisble %s, ", svarl J 1);

E-17

WAL RN Y - Y, '.L"';'!'\-'\' - A R A P P AT A U ‘.'~'.‘o'.'i

BRI T B
PRSP K Py P WA S W VPP

P
r. "
3
I
b,

R Py

k = bindec(svarl J));

>
: tprintt(stderr,® decimal value £d, Cost $d\n",k, actcostl stnuml]1));
) ;‘-'.‘- §
~’ fprintf(stderr,"OPT: mns %d, san £d\n*, mns, san) ;
fprintf(stderr,"OPT: The solution took £d iterations\n®, pass) ;
: §
AR HHHHHHEHHHHE NS R/
;,‘ : /* BINDEC - Converts a character siring of 1's and O's
"' +o a decimal number.
;ﬁ */
o
bindec (p)
char *p;
§
: Int J .k, r;
-
»
X k=]=0;
‘ r = nstates - 1;
while (#*(p + k) 1= 0)
_, s
.,
2:. It (#(p + k) == 1)
‘ J += power(r);
| © s
- """
1:: return J;
:: ;
T
.’I

/* BEST_COST - Determines the smallest actual cost of yver or YVAR.
The result Is stored In svar and the cost is stored In

actcost to minimize the number of Quine McClusky calls
-:_. ./
- best_cost (strans, yver, YVAR, sver, Index, actcost)

o Int strensIMAXNUMBER 1[MAXCOMBIN], actcostIMAXCOL 1, Index;

char yvar [MAXCOL JIMAXNUMBER], YVARL MAXCOL 1{ MAXNUMBER 1,
sverl MAXCOL){ MAXNUMBER 1;

’
‘. ..- .'. .‘. I‘ ’a '.a -

§
Int actual, J ,k ;
char s{ MAXNUMBER 1[MAXCOMBIN];

A sctual = FALSE;

AN -

.." X "-q

.:2 e 1t (actcostl Index]} == -1) /* Cost has not yet been calculated */
" §

0

..:c

‘l\'

. r

et

A

fru'l'h_fl'ablo(s, strans, yverl index]);
dom'_care(s, yvarl Index 1) ;
J = McClus(s, num2n, yvar{ Index], actual);

fru‘th__‘rablo(s, strans, YVARI Index 1);
dont_care(s, YVARL fndex 1) ;
k = QMcClus(s, num2n, YVARL Index 1, actual);
1tC)J>k)
§
actcost! Index 1 = k;
strcepy(svarl index 1, YVARL Index 1);
§
else
§
actcost! Index] = J;
strepy(svarl Index 1, yvarl index 1);
{]
§
return (actcost{ Index]);
§

/mmmmmm/
Vi d
DONT CARE - fllls In the don't cere states to the truth table
74
dont_cere(table, string)
char tsblel MAXNUMBER 1{ MAXCOMBIN 1, stringl MAXNUMBER) ;
§
Int J, k ;

for (] = nstates ; | < num2n ; J++)
§
for (k=0 ; k < numlnp ; k++)
tablel J I k] = *1* ;
stringl J1=0; /% Make sure that the string Is completely
terminated */
§

/mmmmmmmn/
/% VALID ~ determines |1 a state assignment scheme Is valld */

valld (stnum, yvar)
cher yvar [MAXCOL) [MAXNUMBER) 3

.

0.' l.. l".

A

28"

. 28 .l.l.

D
A e A .,

o »
LSRR, TS

y / .’ ’.l..k, . -

L3

<

Y 'l‘<5.‘l .‘1 f.

Int stnumiMAXCOL);

§
Int J, k, |, welght, wtlMAXCOL);

1f { mass debug)
tor (J = 0;] < maxstate; J++)
fprintf(stderr,®va’id: Es\n®, yverl stnuml J) 1);

J=0;
while C yvart O)l J11=0)
§
k=1;
welght = 0;
for (I= 0; | < maxstate; |++)
§
wolght += ((yvarl stouml | 1 1L J 1 - *0°) * k);
k #*= 2;
§
for (1 =0; | < J; 1++)
1t (welight == wtl | 1) return FALSE;
wil J] = weight;
3
11 (mass debug)
fprintf(stderr,"Valld: welght Sd\n", welght);
§
return TRUE;
§

7SR HHEHHHHHHEHHHEHHHHHHHHHHEHHNHHHHMHH S

/% NEXTASN - gets the next combination of state assignment columns */

nextasn{ stnum, p, ifmit)
int stnumiMAXCOL}, p, limit ;

§
Int val;
vel = TRUE;
1t Cstnuml p) < llmlit = 1) stnuml p) += §; .
else
1t(p>0)

§

val = nextasan(stnum, p - 1, llmit -~ 1);

sthuml p Il =stnum [p-11]+1;

§

else
1t (stnum [p) < dsanum ~ maxstate)
stnuml p] += 1{;
else
val = FALSE;

return vel;
§

[SR HHHHHHHHHHHHHEHH

/% MERGE - produces the tinal output tile for PRESTO */

merge { strans, otable, svar)

char oteab |e[MAXNUMBER 1IMAXCOMBIN], svar[MAXCOL 1{MAXNUMBER];
Int strans{MAXNUMBERI{MAXCOMBIN] ;

§

Int J, k, |, m;

char storel MAXNUMBER J;

fprintf(fout,.1£d n.ofd", ninputs + maxstate, noutputs + maxstate);
fprintt{fout,” n.pfd n", nstates * numinp) ;
for (] = 0; J < nstates ; J++)
for (k = 0; k < numinp; k++)

§

decbin(store, k, ninputs); /% lnput signals */

fprintt(fout,"gs", store);

for (| = 0; | < maxstate; I1++) /* Present Stote */

putct svarl | 1l J 1, fout);

pute(' *, fout); /% Put a space between the Input and
output perts of the PRESTO Input flle */
m=stransl JIlL k] ~1; /* Use m as an array polnter for svar */
for (| = 0; | < maxstate; |++)
putc(svar{ | 1l m], fout }); /% Next State ¥/

for (| = 0; | < noutputs; I++)
putc(otablel J 3l k + |), fout); /* Output signals #/
putc(*\n', fout);
§
fprintt(fout, ".e\n");

J STRRRBR-ER I E-HHHHHHHHHHHHHHHNHHHHHHHHHEHHHMHEHHHHHEHHHHHHE R
/% GENO ~ generates ‘distinct state columns with n '0's */

gen0(yver, n, vernum, varpos)
char yvarIMAXCOL 1 TMAXNUMBER] ;
Int n, vernum, varpos;

]

1t ¢ verpos == 0) yver({varnumllvarpos]l = *0*;
iItin>1)
for (verpos++ ; varpos < nstates ; varpos++)
§
yvarivernumliverpos] = '0*;
vernum = gen0(yvar, n=1, varnum, varpos);

E-21

" R g™ i s bt e o "R VR P LU R RN RUNLRLEY A O A S R A A A A R A R AR AL A A e
v,

>

o

::' yvarivarnum)ivarpos] = *-¢;

S - [

" - olse

{ It Cn==1)

o p

- strepy(yvarlvernum + 11, yvarlvarnuml);
_\ yvar{varnumt+1lvarpos) = *0%;

It (mass_debug)
fprintf(stderr,"GENO yvar: £s\n", yvarlvarnum - 11);

§
else error(8);

return varnum;
§

ALY,

i

/B HHHHHHHHHHHHHHHHHHHHHHHHHHHHHEHEHHHEEHE S HHEHHHHHNHHHHHHHHHHHH

23 /% GEN1 - generates distinct state assignment columns with n *1's #/
: gent(yvar, n, varnum, varpos)
~d char yvar[MAXCOL 1{MAXNUMBER];
:@-‘j int n, varnum, varpos;
X $
::.)
k 11(mass debug) .
@ fprintf(stderr,"GEN1 \n £d, varnum £d, varpos $d n®, n, vernum, varpos);
& 1t(n>1)
~ while (++varpos < nststes)
b §
- yvarivarnuml{varpos] = *1°;
it (mass_debug)
fprintt(stderr,"GEN1 yvar: Ss\n", yvarlivarnuml);
varnum = genl(yvar, n-1, varnum, varpos);
yvarivarnumlivearposl = '-!;
§
s else
- 1t(n==1)
i while (varpos < nstates - 1)
- §
- strepy(yvarivernum + 11, yverlvarnum));
:} yvarlvarnuml{++varpos] = *1°;
i 1t (mess_debug)
= fprintt(stderr,*GEN1 yvar: $s\n®, yvarivarnuml);
varnumt+;
. §
:-:j else error(9);
= return vernum;
7-' s
2
’ Ch e
4
.'4
N
A
.. E-22
N
'-.. L] O]

X
a
-
' ses /% DECBIN - converts declimal number to binary string of '0's and '1's #/
S decdbin(p, n, numlen)
X Int n, numlen;
char *p;
-\‘
o4 §
"y Int psIMAXNUMBER], J, k;
.'-':_; J=0;
N white ¢ n 1= 0)
~
\ ; ors
~ pstj++) = (n% 2) + '0°;
nen/2;
ANy =i
{‘ for (k = 0; k < numien; k++)
t 1 (k = pumlen - 1 - J)
.:;,s-, *(p+k) = psl J—1;
b olse
] #(p + k) = 0';
, $:§ *p + k) = 0; /* Terminate the string *
<
A 1t ¢ debug)
N fprintt(stderr,"DECBIN: $s\n", p);
i O ’
b
A
Y
.-:\ /mmmmmm/
:_\
i /* CODE_SIMPLE - Sisple assignment #/
e code simple(strans, sver)
S char svar {MAXCOL J IMOMNUMBER 1;
:.:-‘: Int stranst MAXNUMBER)i MAXCOMBIN 1 ;
o §
’ int J, kK, m, actual, total ;
. char st MANNUMBER), st MAXNUMBER]I MAXCOMBIN 1;
:::- n=0;
~:,, fotal = 0 ;
s octual = FALSE ;
for ; J = 0; J < nstates; J++)
:':: decbin(st, J, maxstate); /* Generate binary numbers #*/
'_::- for { k = 0; k < maxstete ; k++)
o svert k L J) =stl k J;
) [1
., - for (J=0;) < maxstate ; J++) /% Get them In y varlable format %/
<~ N ’
'\ ~."
> for (k = 0 ;3 k < nstates ; ke+)
: stlk]1=gsverl JIL kI
Ad
O £E-23
oA
- .;(ﬁ'.ﬂf .:,\..‘. '.:.A\' . .J'-;-";-' ! ~-_.;._..‘. P ;._J;.,.:.. . e T -... et e, PO_ .. . ,'.~ I _~. .. '.~,.-' ...-'-\.-'..:\-

. - LU o i e i A R A PRI TR TETITET ST ATATY
c.".(
ot
Lo ’ stl nstates 1 = 0 ;
N) truth table(s, strans, st) ;
o o ® = QMcClus(s, num2n, st, actual) ;
i e total += m ;
o fprintt(stderr,"SIMPLE: verlable $s, cost Sd\n", st, m) ;
l‘ s
oY
::-: forintt(stderr, "SIMPLE: Cost £d\n", total) ;
Ly ’
)
“s
o
\ h
. .‘1:.
\‘_ /% CODE_GREY - Gray code *"
. code grey(strans, svar)
f‘_.-,' char svar [MAXCOL 1 IMAXNUMBER1;
-.i' Int strans! MAXNUMBER }{ MAXCOMBIN] ;
'-_.: §
K- Int J, k, m, actuel, total ;
e cher stl MAXNUMBER 1, sIMAXNUMBER]I MAXCOMBIN 1;
;:.: code_simple(strens, svar); /* Get blnary assignments #/
..:: for (J = 0; J < nstates; J++)
N §
SOy . for (k = 0; k < maxstate ; k++) /* Convert them to gray code */
stl k) =sverl k)] J;
e 6 gray_codel st);
e for (k = 0; k < maxstate ; k++)
- svarl x Il J) =stl k);
~
o, §
vl
o m=0;
total = 0 ;
_:.;-: sctual = FALSE ;
o for (J=0; J < maxstate ; Jo+)
§
” for (k =0 ; k < nstates ; k++) /% Convert them t yvartable format */
N stik } =svarl JIL Kk I
.,_i‘ stl nstetes) = 0 ; /* Terminate the string 4
:‘.‘.\ truth_teble(s, strans, st) ; .
:;. o = McClus(s, num2n, st, actual) ;
> total s g ;
‘ fprintf(stderr, "GRAY CODE: varisble £s, cost Sd\n", st, m) ;
o §
TP
fprintf(stderr, ® GRAY CODE Cost: $d w*, total) ;
o §
b
.."'..‘
T E-24

oA A
"_-',.;

/* POMER - ralses the given Integer to a power of two %/

SN

. power(n)

e ' Int n;

{ §

o Int J, pow = 1;

-: 1t (pn == 0) return pow;

*g : oise for (J = 0; J < n; Jj++)

pow = pow * 2;

return pow;

X, §

-,

4

/” LOADINT - loads Integer strings of maximum length MAXLEN */

5

o loadint(p, numrow, numcol)

4 Tt PIMAXNUMBER 1 {MAXCOMBIN1;

: Int nuerow, numcol;

; §

L Int J, k, check;

o4 1#(debug)

o0 §

L

¥

fprintf(stderr,"LOADINT: the number of 'state rows to load 1s $d\n",numrow);
fprintt(stderr,"LOADINT: the number of next state columns !s $d\n",numcol);

"y §

' for (J = 0; J < numrow; J++)

N §

:: for (k = 0; k < numcol ; k++)
- §

Y scanf("$d", &check);

-: 1t (check 1= NULL) plJIIk] = check;
:- else errorid);

a 1t (mass_debug) fprintf(stderr,” $d*, plJIlk]);
oy §

< It (mass debug) fprintt(stderr,\n");

§

/mmummmmm/
} /® LOADCHAR - joads character sirings. »/

loadcher{otable, nstates)
char oteb el MAXNUMBER) {MAXCOMBIN);

e Int nstates;
9% $

1ot J, check;

LS

T T

L,
_‘-:".
v
0
o
’
»
I3
.
s
»
’
.
’
.
’
.
)
1
.
.
’
’
'
0
.
0
I
t
.
.

.
.

0

»
e

.
s s

for (] = 0;] < nstates; J++)
§
1f((check = scanf(®Ss", otablelJ))) == NULL) error(5);
1t ((strien(otablelJ])) 1= numinp * noutputs) error (6);
1t (mass_debug)
fprintt(stderr,"LOADCHAR: S$s\n",otablel]));

'...
N %5

A &

AL
o A

=

¥ I g
s %%
*e
oA

)
N

“ela

.,
s s

Pt
st le s

f??::u ¥

[BB RRH NS HHHHHHHHHHHEHHHHEHNHHEHHHHHHHHHHHHE

s ‘e %

/% SETNUM - sets the value of global varlables dsanum, maxstate,

pre.. num2n, and num2n 1 */
..
P setnum()
e §
:J':. int J, k, n;
” n=0;
<o while ((power(n) < nstates)) n++;
.h:‘. num2n = power(n); /* Calculate the number of state varlables required */
:*J‘ maxstate = n;
o) num2n 1 = power((n=1));
@ num2R 1 = power((nstates-1)) ~ 1;
o~ numZ2R = power(nstates);
an
-\h
. dsanum = 0;
Oy for (J = (nstates - num2n_1); J <= num2n_1; J++)
. dsanum += bionom(nstates, J);
) dsanum = dsanuw/2;
1t (debug)
o §
_-:: tprintf(stderr,"SETNUM: n £d, num2n £d, maxstate £d,", n, num2n, maxstate);
e fprintf(stderr,” num2n 1 %d, num2R 1 %d n", num2n_1, numR 1);
o tprintt(stderr,” numZR £d, dsanum £d \n", num2R, dsanum);
§
o 5
'.:-d
L :_: /% BIONOM - calculates the numerical result of x things taken y at a time
Y
N blonom(x,y)
b Int x, y;
4 aa §
f}.. \"-:'_~. 'M Jp d'f’p ﬂ. .‘
N
e n=x
o~
) E~26
A
N
i ."A.‘
“ ‘ o ;’-".'fd"‘f.'f-.,:'.;;'.':'.'-' _'..;f.:.-."-.'(.;.r.',-...-".-'_.,-....' ..'...';\.".:.'...';\...-;. ';.".."'v",:I.':'\:'-'-f\—f.';’\;'\-ﬂ%}.\ﬂ;\'\-'.' \..'.“‘-(:'.‘-_.

R
o neys
Sy - dift = x - y;
- SN for (J= 1+ ditt; J<x; J#+) n®= J;
; for (J=1; J<y;) m*= |;
Y-t 1¢(debug)
.:L\: fprintf(stderr,"BIONOM: £d things taken $d at a time 1s %$d\n",x,y,n/m);
*:-’.‘4 return (n/m);
0D §
-.."
L
-::\: /mmmcmmmm/
h‘»‘
L L
W /% PRNT() —- print a single dimension array until value EOR or -2 |s reached */
i pratip)
2 It 49
b~
'-::: int .
2. %M .P‘o
R} p] = p;
- fprintf(stderr,"Partitions: n");
”
Ny
N
\;_\ for (p1 = p; #*p1 = EOR; pi++)
N fprintt(stderr,® $d®, #pi);
Y tprintf(stderr,”\n");

[HHHHHHHHHHHHHHHHHHHHHHEHHHHHHSHHHHHHHHHHHHHHEHHHHHHHHHHHH -/

.\-r'. /% FORMAT - prints an text flle of global variebies Nstates, Ninputs,
;: S Noutputs, Symbol, Lambda, and the two arrays: Stable and Otable
> */
-
" formet(stabie,ctable)
Int stable{MAXNUMBER) (MAXCOMBIN];
N char otebleIMAXNUMBER] IMAXCOMB IN;
N §
\j\' iInt J, k, 13
5350
: it (debug)
§
e fprintt(stderr ,"Hello from FORMAT! Prints the state ");
> tprintt(stderr,” transition and output arrays. n%");
+e §
B tprintt(stderr,"Sd $d $d $d $1.1¢",nstates,ninputs,noutputs,symbol, lambda);
tprintf(stderr,” Sd\n\n", errorstate);
. for (J=0;] < nstates; J++)
YA o §
${$. “.’
MO for (k = 0; k < numinp; k++)

T e e e e e

.
e .t

L UL N

T

b2, 7

WY Y b P AR

<

R R

; ‘.‘

e %

e

DA o)
)

L2

fprintf(stderr,"sd ",stablel J1lk));
tprintt(stderr,” \n");
§
torinttistderr,”\n");
If (¢ numlinp * noutputs) > NUMCOL)
§
fprintt{stderr,"Warning — the output array will print funny since ");
fprintt(stderr,"numinp * noutputs Is longer than £d.*, NUMCOL);
§
for (J = 0; J < nstates; J++)
fprintt(stderr, "Ss\n",otablel j]);
§

[AR R NN/
/% FORM - prints Just the transition teble */

form (strans)

Int stransIMAXNUMBER JIMAXCOMBIN];
§

Int J, k;

for (] = 0;] < nstates; J++)
§
for (k = 0; k < numinp; k++)
fprintf(stderr,"Sd “,stransi J}L[k]));

fprintt(stderr,®\n");
§
tprintt(stderr,\n");
§

/mnﬂmmmmm/
/* ERROR - Prints error messages to stderr */

errorin)

Int n;

§

cher *p1 = "ERROR - Usage: assign [-d] [-sa,-gc]l outfile.ext < Intlle ",
#p2 = "ERROR - Can't open the output fllel®,

#p3 = "ERROR - One of the state table parameters Is Incorrect.”,
%p4 = "ERROR - Next state Input flle errori®,

#pS = "ERROR - Output string incorrect. *,

*p6 = "ERROR - Output string Is not equal to numinp *,

#%p7 = "ERROR - Wrong number of distinct Stete Assignment Columns®,
#p8 = "ERROR - GonO called with n less then 1. %,

*p9 = "ERROR - Genl called with n less then 1. ";

switch(n)
§

O NP N AT NS e e m e T T T L N P S ST e e e . .
ol ol N A AT I I A N R I A PN N T N e T

case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:

default: fprintf(stderr,"ERRONEOUS call to ERRORII!\n\n");

(1
exit(1);
§

tprintt{stderr,"Ss\n\n",
fprintt(stderr,®Ss\n\n",
fprintf(stderr,*Ss\n\n¥,
tprintf(stderr,"Ss\n\n",
tprintt(stderr,"Ss\n\n",
fprintt(stderr,"Ss %d. n
fprintf(stderr,*Ss\n\n",
fprintt(stderr,"$s\n\n",
fprintf(stderr,"$s\n\n",

pl1); break;
p2); break;
p3); break;
p4); breek;
p5); breek;
n", p6, numinp); break;
p7); break;
p8); break;
p9); break;

CFORM.C

.
Y

3 % l“,:"f. .‘s

‘v

/* CFORMAT - changes PRESTO's output file to the tormat

S required by PLAGEN. |+ also adds the CIF number and lambda
'_t slze, supplled in the command Ilne, to the flle.
o, CFORMAT uses the standard Input. Input files are supplied
» by 170 redirection. CFORMAT assumes that the input and output
arrays are separated by a space. The output flle Is suppllied
o In the command Iine.
-.:'.: Usage: cform symbollc state.table < assign.out
Py ./
SN
- finclude <stdlo.h>
#define READ “r®
- #detine WRITE "w"
2 #detine NULL O
- /* MAIN PROGRAM »/
mainlarge, argv)
. int arge;
:\; ;:har #argvl];
L
o cher stringl2l, c;
= Int numinp, numout, numprod, symbolnum, J, k ;
- @ tloat tambda; :
. FILE *f1 ;
*-:_Z 1¢ Cargc 1= 2) error(0);

14 ({41 = fopen(argvi1],READ)) == NULL) error(4);

numinp = pumout = numprod = 0; /% Inltlallze array size varliabies for
later error check that the PLA has
no zero parameters */

T

“, fscanf(1,"S%d $*d $*d $d 51", &symbolnum, &lambda);

N

~ for (J =05 J< 35 J*+)

s § /* Get the PLA parameters %/
scant("$2s", string);

» 1t (stringl0] i= *.*) error(1);

-:.: . switch (stringlil)

) §

case '1': scanf("f£d", &numinp); break;

o case 'o': scanf("%d", &numout); break;

= cese 'p': scanf("$d", &numprod); break;

o default: error(1);

o §

§

>

-.‘

. 1f (auminp * nusprod * numout == Q) error{l);

: /% Vrite the PLA parameters to the output flle #*/

w . printf(*$d, $d, £d, ",numinp, numprod, numout);

y G printf("%d, $1.1¢\n", symbolnum, lambda);

-’ /% Get the PLA specltications and trensfer them to the output

%'

N

- F-1

XM

-~

ko

- .-. I '.. -l .'\'.\‘.q-‘ ..~--.'..'_-'.-"- .
SN AR AP L S WA

TR U P L O R T e e e e e
I 1800 4 2 MR IENT NI \' AN ,_;a'\'..a'..:!f:‘t;.l'.'-': TR

SSRGS AR R RA AR A L2 AAC A R S R R A L Wh it Bl bl Sl S EALSALE AR AN TSI e M ATt R TR L AR T i
i
? tile. The Input vaiues are not changed. The output
N values are changed as shown In the switch. */
83 i
o for (J = 0; J < numprod; J++)
e]
; for (k = 0; k < numinp; k++) /* Handles |nput Array */
§
scant("$1s*, &c);
putchar(¢);
§
putchar(® *);
2 for (k = 0; k < numout; k++) /* Handles Output Array */
] §
N scant(*$1s%, c);
o switch (c)
N §
case '1': putchar('-'); break;
-~ case 'x': putchar('0'); break;
s case '-': putcher('0'); break;
e case '0': putchar(¢); break;
i} default: error(3);
§;
§
putchart * n');
b=, $
- §
2 . error(n)
@ Int n;
o §
", switch (n)
i $
o case 0: fprintf(stderr,Usage: cformat symbollc_state.table™);
W tprintf(stderr,”\nStandsrd calls cform sym st.table < ");
- fprintf(stderr,® s.out | plagen\n\n");
y break;
,'_j case 1: fprintf(stderr,"ERROR ~ PLA parameters \n\n"); bresk;
-2 case 2: fprintf(stderr,"ERROR ~ The number of characters In the Input");
.- fprintf(stderr,” string did not match the number assocliated\n™);
=y forintt(stderr,"with 1. The required space between the Input®);
fprintf(stderr,® and output errays may be missing.\n\n");
o~ break;
j{ case 3: fprintf(stderr,"ERROR ~ The output array had an 1llegal charac™);
EN fprintt(stderr,"ter.\n Legal characters sre *-', "1, 'x'%);
- fprintf(stderr,”, and '0'.\n"); break;
case 4: fprintf(stderr,"ERROR ~ UNABLE to open output file.\mn");
; break;
'}': defeult: fprintf(stderr,"ERROR ~ erronecus call to errorl \n\n");
O.”' ‘
VI ox1(0);
% §
. A
) A
n':'
'l. N
o
o F - 2
-
¥ WA ! ’ RIS A N y -‘;-_'.:n' :-' et Ry '1'.‘1._-'. T "_ IR ..-'._-‘._-'.‘-‘.."\-'."'.;'..':\1\«"._' o \'

P D T Tte W ot o B ‘e - 1 LA A A M A i i T VA S AN E ORI A DN AT O AN I T A T P T A '.'7.-."1
K R A A AR AR

- MAKE SFSM.C
oAt -
.AJ

/mmmmmmm/
/<I
Make sfsm - Creates the SFSM CLL flle
*/
#include <stdlo.h>
#define FALSE O

#define TRUE 1
.r*' maln(arge, argv)
N Int argc ;
n char *argvl] ;
§
B FILE *fin1, *tin2, *fout ;
o int 00, n1, n2, n3, n4, n5, n6, numinp ;
b int J, k, maxstate, found;
o char ¢, storel 80 1, stringl 20) ;
_'P. strepy(string, “external®™);
: '."' fin1 = fopen(argvl 1 1, *r");
. £In2 = fopen{ argvl 2 1, "r");
-»:: fout = fopen(“stsm pla.clf", "w") ;
= fscanf(tin2, "%d £d", &J, &numinp);
:;-' k=1;
" maxstate = 0;
L while (k < J)
§
o k #=2;
N maxstaters ;
"\ ’
N
= found = FALSE ;
vhile ((c = getc(fIn1)) I= EOF)
3 §
- £ ¢ (c == *(7)88(found == FALSE)) .
L §
X
) fscanf(fin1,"%s", store);
oy 1¢ (stremp(string, store) == 0)
- §
A0 J = strien(store) ;
N storel J++ 1 =0 0 ;
Ty /% Make sure that there s a space between words */
- whilel (c = getcl finl)) I= *)*)
storel J++) = ¢ ;
2 storel J#+ 1 = c ; /% Get the last character */
) R storel j1=0; /% Terminate the string */
< G while ((c = getc(fint)) 1= *\n") ;
$: found = TRUE ;
{4
-
n 6-1
s
~:.

L T Y S I) T -z ey
-,4'.‘- RIS DR € ";"\' LT N

» A .

o - £
grave \d "R NS AL re B4) S e Jar den A 4904 b A RACIACH A Bt I Jur RO At S eI S Tt ihAn Jhe eIt S e Ji s B A Ay Jias Y _'W“T_ =
-

v

X §
'\ W else

30 LA §
{ putc(¢, fout) ;

fprintf(fout, "%s", store);

- §

- s

- else

pute(¢, fout) ; /* Write all characters In the fl1le except the

external pla message - I+ can appesr anywhere

In the file and disrupt the cif filel #/
N §

{-', printt("fFinclude \"/usr/11b/local/s ext.clI\" \n") ;

e printf(*%s \n", store) ; -

printf(® nSFSM n§ n nplaC0,0); \n") ;

S nl = maxstate + numinp ;

N n2=n1/2 ;

- n3 =28 +nl*16;

- nd =12 ;

nS =22 ;

B né=7;

S printf("iterate £d, 1 16, 0\n*, n1) ;

- printf(* PlaClockin ¢ 15, =58); \n") ;

b printf("lterate 8d, 1 16, O\n", n2) ;
i @ printfC ® PlaClockOut ($d, —53)3 \a", n3);

L)

b n3+=3;
' for;J-o;J<msfm;J++)

y printt("wire poly %d, —53w 2d%d | $d ", n3, nd4, n5);

printt("diff u %d ;\n", n6);

.:' n3 += 8 ;

. nd += 10 ;

:‘_ ns += 24 ;

- né += 10 ;

N $

i printf("\n§ \n \n") ; .
- fclose (fout) ;

A §

"

il

1.‘

i

N N

W

.~

.

-

a 6-2

" SR T A R S, VA T ~ NN N "~.-'w.;}."_-.;;\‘;\:_-,:', . e A

" VITA

{

E Darrell Clarke Pelan was born on 10 June 1957 at Larson Air Force

¥

>

A Base in Moses Lake, Washington. He graduated from high school in
Bothell, Washington in 1975 and attended the University of Washington

LN

b from which he received the degree of Bachelor of Science, Electrical

&3

'; Engineering in June 1980. Upon graduation, he received a commission in
the USAF through the Officer Training School program. He served as a

4

‘} Computer Software Engineer in the Embedded Computer Branch of the Air

o

= Force Acquisition Logistics Division, Wright-Patterson Air Force Base,

; Ohio until entering the School of Engineering, Air Force Institute of

AN

2 Technology, in June 1982.

N

~

| @

¥ Permanent Address: 6112 NE 154th St

"y

« Bothell, Washington 98011

7

*I

J‘

25

a'

N

X

.

<

\l

R

x

v

<

3)

.. -

Wi oL . " - naw Ca o™ e 2 "m Te b
W Y, . S) ») 'h‘ v, ‘I 'y, l\» !., \ \ . A “..' Yot

REPORT DOCUMENTATION PAGE

1 JAEPORT SECURITY CLASSIFICATION

. UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/EN/83D-57

5. MONITORING ORGANIZATION REPORT NUMBER(S)

I6b. OFFICE SYMBOL
(If applicabdle)

AFIT/EN

6a. NAME OF PERFORMING ORGANIZATION

School of Engineering

7s. NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City. State and ZIP Code)
Alr Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

7b. ADDRESS (City, State and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(if applicabie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)

See Box 19

TASK
NO.

PROGRAM PROJECT

WORK UNIT
ELEMENT NO. NO. NO.

12 PERSONAL AUTHOR(S)

ﬁ_l Darrell C. Pelan, BSEE, 1Lt, USAF
1Ja TYPE OF REPORT

13b. TIME COVERED

15. PAGE COUNT

137

14. OATE OF REPORT (Yr, Mo., Day)

MS Thesis FAOM TO 1983 December
16. SUPPLEMENTARY NOTATION
Bpgroved tor Fulitgyrelcaser 1AW AFR 130-19,
Y ¥y e, Mo
17. COSATI CODES 18. SUBJECT TERAMS (Continue on reversqif m@‘i@qﬁg,ﬂﬁ%m
FIELD GROUP SUB. GA. Wright-Pattesson AFB OH 44483

Thesis Chairman:

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: PLAFST Programmable Logic Array From State Table

Harold V. Carter, Lt Col, USAF

20 DISTAIBUTION/AVAILABILITY OF ABSTRACT

..
vnlLassipigo/unLimTeo G same as mer. O oTic users O

21. ABSTRACT SECURITY CLASSIFICATION

220 NAME Of RESPONSIBLE INDIVIDUAL
Harold W. Carter, Lt Col, USAF

22b. TELEPHONE NUMBER
{Include Area Code)

5]3-255-3633

22¢c. OFFICE SYMBOL
AFIT/EN

i~ ————— ...

AFIT/GE/EE/83L-57

Abstract

Programmable Logic Array From State Table (PLAFST) is a computer
aided design (CAD) tool that takes a symbolic state table as input and
produces a very large scale integrated (VLSI) circuit implementation of
the symbolic state table. The state table is first reduced symbolically
using equivalence partitiﬁning. A near optimal binary state assignment
is made based on the Story, Harrison, and Reinhard procedure as modified
by Noe and Ryhne. Distinct state assignment variables are sorted based
on cost estimates obtained by increasing the number of adjacencies in
the state transition table. Once sorted, the actual costs of valid
state assignments made from the state variables are calculated. Since
state assignments with the lowest cost estimates are investigated first,
an optimal solution is found with a small number of 4teratioms. This
binary state assignment is demonstratably less costly than either simple
or gray code assignments of the state variables. The VLSI circuit
consists of a programmable logic array (PLA) and clocked buffers. The
state buffers are properly interconnected. The final outputs are Chip
Layout Language (CLL) and Caltech Intermediate Format (CIF) descriptions
of the integrated circuit. PLAFST also plots the final integrated

circuit.

H

1
-t
y:
H
1

,

DRSS R M

